Медицинский портал. Щитовидная железа, Рак, диагностика

Меры измерения в физике. Измерение величин

В 1875 г. Метрической Конференцией было основано Международное Бюро Мер и Весов его целью стало создание единой системы измерений, которая нашла бы применение во всем мире. Было решено, за основу принять метрическую систему, которая появилась еще во времена Французской революции и основывалась на метре и килограмме. Позднее были утверждены эталоны метра и килограмма. С течением времени система единиц измерения развивалась, в настоящее время в ней принять семь основных единиц измерения. В 1960 г. эта система единиц получила современное название Международная система единиц (система СИ) (Systeme Internatinal d"Unites (SI)). Система СИ не обладает статичностью, она развивается в соответствии с требованиями, которые в настоящее время предъявляются к измерениям в науке и технике.

Основные единицы измерения Международной системы единиц

В основу определения всех вспомогательных единиц в системе СИ положены семь основных единиц измерения. Основными физическими величинами в Международной системе единиц (СИ) являются: длина ($l$); масса ($m$); время ($t$); сила электрического тока ($I$); температура по шкале Кельвина (термодинамическая температура) ($T$); количество вещества ($\nu $); сила света ($I_v$).

Основными единицами в системе СИ стали единицы выше названных величин:

\[\left=м;;\ \left=кг;;\ \left=с;\ \left=A;;\ \left=K;;\ \ \left[\nu \right]=моль;;\ \left=кд\ (кандела).\]

Эталоны основных единиц измерения в СИ

Приведем определения эталонов основных единиц измерения как это сделано в системе СИ.

Метром (м) называют длину пути, который проходит свет в вакууме за время равное $\frac{1}{299792458}$ с.

Эталоном массы для СИ является гиря, имеющая форму прямого цилиндра, высота и диаметр которого 39 мм, состоящего из сплава платины и иридия массой в 1 кг.

Одной секундой (с) называют интервал времени, который равен 9192631779 периодам излучения, который соответствует переходу между двумя сверхтонкими уровнями основного состояния атома цезия (133).

Один ампер (А) - это сила тока, проходящего в двух прямых бесконечно тонких и длинных проводниках, расположенных на расстоянии 1 метр, находящихся в вакууме порождающая силу Ампера (сила взаимодействия проводников) равную $2\cdot {10}^{-7}Н$ на каждый метр проводника.

Один кельвин (К) - это термодинамическая температура равная $\frac{1}{273,16}$ части от температуры тройной точки воды.

Один мол (моль) - это количество вещества, в котором имеется столько же атомов, сколько их содержится в 0,012 кг углерода (12).

Одна кандела (кд) равна силе света, который испускает монохроматический источник частотой $540\cdot {10}^{12}$Гц с энергетической силой в направлении излучения $\frac{1}{683}\frac{Вт}{ср}.$

Наука развивается, совершенствуется измерительная техника, определения единиц измерения пересматривают. Чем выше точность измерений, тем больше требований к определению единиц измерения.

Производные величины системы СИ

Все остальные величины рассматриваются в системе СИ как производные от основных. Единицы измерения производных величин определены как результат произведения (с учетом степени) основных. Приведем примеры производных величин и их единиц в системе СИ.

В системе СИ имеются и безразмерные величины, например, коэффициент отражения или относительная диэлектрическая проницаемость. Эти величины имеют размерность единицы.

Система СИ включает производные единицы, обладающие специальными названиями. Эти названия - компактные формы представления комбинации основных величин. Приведем примеры единиц системы СИ, имеющих собственные наименования (табл. 2).

Каждая величина в системе СИ имеет только одну единицу измерения, но одна и та же единица измерения может использоваться для разных величин. Джоуль - единица измерения количества теплоты и работы.

Система СИ, единицы измерения кратные и дольные

В Международной системе единиц имеется набор приставок к единицам измерения, которые применяют, если численные значения рассматриваемых величин существенно больше или меньше, чем единица системы, которая применяется без приставки. Эти приставки используются с любыми единицами измерения, в системе СИ они являются десятичными.

Приведем примеры таких приставок (табл.3).

При написании приставку и наименование единицы пишут слитно, так, что приставка и единица измерения образуют единый символ.

Отметим, что единица массы в системе СИ (килограмм) исторически уже имеет приставку. Десятичные кратные и дольные единицы килограмма получают соединением приставки к грамму.

Внесистемные единицы

Система СИ универсальна и является удобной в международном общении. Практически все единицы, единицы не входящие в систему СИ можно определить, используя термины системы СИ. Применение системы СИ является предпочтительным в научном образовании. Однако имеются некоторые величины, которые не входят в СИ, но широко используются. Так, единицы времени такие как минута, час, сутки являются частью культуры. Не которые единицы используют по исторически сложившимся причинам. При использовании единиц, которые не принадлежат системе СИ необходимо указывать способы их перевода в единицы СИ. Пример единиц указан в табл.4.

Содержание:

Электрический ток характеризуется такими величинами, как сила тока, напряжение и сопротивление, связанными между собой. Прежде чем рассматривать вопрос, в чем измеряется напряжение необходимо точно выяснить, что это за величина, и какова ее роль в образовании тока.

Как действует напряжение

Общее понятие электрического тока заключается в направленном движении заряженных частиц. Эти частицы представляют собой электроны, перемещение которых происходит под действием электрического поля. Чем больше зарядов нужно переместить, тем большая работа совершается полем. На эту работу влияет не только сила тока, но и напряжение.

Физический смысл этой величины заключается в том, что работа тока на каком-либо участке цепи соотносится с величиной заряда, который проходит по данному участку. В процессе этой работы положительный заряд перемещается из точки, где имеется небольшой потенциал, в точку с большим значением потенциала. Таким образом, напряжение определяется в виде или электродвижущей силы, а сама работа является энергией.

Работа электрического тока измеряется в джоулях (Дж), а величиной электрического заряда является кулон (Кл). В результате, напряжение представляет собой отношение 1 Дж/Кл. Полученная единица напряжения называется вольтом.

Чтобы наглядно объяснить физический смысл напряжения, нужно обратиться к примеру шланга, наполненного водой. В данном случае, объем воды будет играть роль силы тока, а ее давление будет эквивалентно напряжению. При движении воды без наконечника, она свободно и в большом количестве перемещается по шлангу, создавая невысокое давление. Если же конец шланга прижать пальцем, то произойдет уменьшение объема при одновременном повышении давления воды. Сама струя будет перемещаться на значительно большее расстояние.

В электричестве получается то же самое. Сила тока определяется количеством или объемом электронов, перемещающихся по проводнику. Значение напряжения, по сути, является силой, с которой происходит проталкивание этих электронов. Отсюда следует, что при условии одинакового напряжения, проводник, проводящий большее количество тока, должен обладать и большим диаметром.

Единица измерения напряжения

Напряжение может быть постоянным или переменным, в зависимости от тока. Эта величина может обозначаться в виде буквы В (русское обозначение) или V, соответствующее международному обозначению. Для обозначения переменного напряжения применяется значок «~», который ставится перед буквой. Для постоянного напряжения существует знак «-», однако на практике он почти не применяется.

Рассматривая вопрос, в чем измеряется напряжение, следует помнить, что для этого существуют не только вольты. Большие величины измеряются в киловольтах (кВ) и мегавольтах (мВ), что означает соответственно 1 тысячу и 1 миллион вольт.

Как измерить напряжение и ток

Физическая величина это характеристика физических объектов или явлений материального мира, общая для множества объектов или явлений в качественном отношении, но индивидуальная в количественном отношении для каждого из них . Например, масса, длина, площадь, температура и т.д.

Каждая физическая величина имеет свои качественную и количественную характеристики .

Качественная характеристика определяется тем, какое свойство материального объекта или какую особенность материального мира эта величина характеризует. Так, свойство "прочность" в количественном отношении характеризует такие материалы, как сталь, дерево, ткань, стекло и многие другие, в то время как количественное значение прочности для каждого из них совершенно разное

Для выявления количественного различия содержания свойства в каком-либо объекте, отображаемого физической величиной, вводится понятие размера физической величины . Этот размер устанавливается в процессе измерения - совокупность операций, выполняемых для определения количественного значения величины (ФЗ «Об обеспечении единства измерений»

Целью измерений является определение значения физической величины - некоторого числа принятых для нее единиц (например, результат измерения массы изделия составляет 2 кг, высоты здания -12 м и др.). Между размерами каждой физической величины существуют отношения в виде числовых форм (типа «больше», «меньше», «равенства», «суммы» и т.п.), которые могут служить моделью этой величины.

В зависимости от степени приближения к объективности различают истинное, действительное и измеренное значения физической величины .

Истинное значение физической величины - это значение, идеально отражающее в качественном и количественном отношениях соответствующее свойство объекта. Из-за несовершенства средств и методов измерений истинные значения величин практически получить нельзя. Их можно представить только теоретически. А значения величины, полученные при измерении, лишь в большей или меньшей степени приближаются к истинному значению.

Действительное значение физической величины - это значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

Измеренное значение физической величины - это значение, полученное при измерении с применением конкретных методов и средств измерений.

При планировании измерений следует стремиться к тому, чтобы номенклатура измеряемых величин соответствовала требованиям измерительной задачи (например, при контроле измеряемые величины должны отражать соответствующие показатели качества продукции).

Для каждого параметра продукции должны соблюдаться требования:

Корректность формулировки измеряемой величины, исключающая возможность различного толкования (например, необходимо четко определять, в каких случаях определяется "масса" или "вес" изделия, "объем" или "вместимость" сосуда и т.д.);

Определенность подлежащих измерению свойств объекта (например, "температура в помещении не более...°С " допускает возможность различного толкования. Необходимо так изменить формулировку требования, чтобы было ясно, установлено ли это требование к максимальной или к средней температуре помещения, что будет в дальнейшем учтено при выполнении измерений);

Использование стандартизованных терминов.

Физические единицы

Физическая величина, которой по определению присвоено числовое значение, равное единице, называетсяединицей физической величины.

Многие единицы физических величин воспроизводятся мерами, применяемыми для измерений (например, метр, килограмм). На ранних стадиях развития материальной культуры (в рабовладельческих и феодальных обществах) существовали единицы для небольшого круга физических величин - длины, массы, времени, площади, объёма. Единицы физических величин выбирались вне связи друг с другом, и притом различные в разных странах и географических районах. Так возникло большое количество часто одинаковых по названию, но различных по размеру единиц - локтей, футов, фунтов.

По мере расширения торговых связей между народами и развития науки и техники количество единиц физических величин увеличивалось и всё более ощущалась потребность в унификации единиц и в создании систем единиц. О единицах физических величин и их системах стали заключать специальные международные соглашения. В 18 в. во Франции была предложена метрическая система мер, получившая в дальнейшем международное признание. На её основе был построен целый ряд метрических систем единиц. В настоящее время происходит дальнейшее упорядочение единиц физических величин на базе Международной системы единиц (СИ).

Единицы физических величин делятся на системные, т. е. входящие в какую-либо систему единиц, и внесистемные единицы (например, мм рт. ст., лошадиная сила, электрон-вольт).

Системные единицы физических величин подразделяются на основные , выбираемые произвольно (метр, килограмм, секунда и др.), и производные , образуемые по уравнениям связи между величинами (метр в секунду, килограмм на кубический метр, ньютон, джоуль, ватт и т. п.).

Для удобства выражения величин, во много раз больших или меньших единиц физических величин, применяются кратные единицы (например, километр - 10 3 м, киловатт - 10 3 Вт) и дольные единицы (например, миллиметр - 10 -3 м, миллисекунда - 10-3 с)..

В метрических системах единиц кратные и дельные единицы физических величин (за исключением единиц времени и угла) образуются умножением системной единицы на 10 n , где n - целое положительное или отрицательное число. Каждому из этих чисел соответствует одна из десятичных приставок, принятых для образования кратных и дельных единиц.

В 1960 г. на XI Генеральной конференции по мерам и весам Международной организации мер и весов (МОМВ) была принята Международная системаединиц (SI).

Основными единицами в международной системе единиц являются: метр (м) – длина, килограмм (кг) – масса, секунда (с) – время, ампер (А) – сила электрического тока, кельвин (К) – термодинамическая температура, кандела (кд) – сила света, моль – количество вещества.

Наряду с системами физических величин в практике измерений по-прежнему используются так называемые внесистемные единицы. К их числу относятся, например: единицы давления – атмосфера, миллиметр ртутного столба, единица длины – ангстрем, единица количество теплоты – калория, единицы акустических величин – децибел, фон, октава, единицы времени – минута и час и т. п. Однако в настоящее время наметилась тенденция к их сокращению до минимума.

Международная система единиц имеет целый ряд достоинств: универсальность, унификация единиц для всех видов измерений, когерентность (согласованность) системы (коэффициенты пропорциональности в физических уравнениях безразмерны), лучшее взаимопонимание между различными специалистами в процессе научно-технических и экономических связей между странами.

В настоящее время применение единиц физических величин в России узаконено Конституцией РФ (ст. 71) (стандарты, эталоны, метрическая система и исчисление времени находятся в ведении Российской Федерации) и федеральным законом "Об обеспечении единства измерений". Статья 6 Закона определяет применение в Российской Федерации единиц величин Международной системы единиц, принятых Генеральной конференцией по мерам и весам и рекомендованные к применению Международной организацией законодательной метрологии. В то же время в Российской Федерации могут быть допущены к применению наравне с единицами величин СИ внесистемные единицы величин, наименование, обозначения, правила написания и применения которых устанавливаются Правительством Российской Федерации.

В практической деятельности следует руководствоваться единицами физических величин, регламентированных ГОСТ 8.417-2002 «Государственная система обеспечения единства измерений. Единицы величин».

Стандартом наряду с обязательным применением основных и производных единиц Международной системы единиц, а также десятичных кратных и дольных этих единиц допускается применять некоторые единицы, не входящие в СИ, их сочетания с единицами СИ, а также некоторые нашедшие широкое применение на практике десятичные кратные и дольные перечисленных единиц.

Стандарт определяет правила образования наименований и обозначений десятичных кратных и дольных единиц СИ с помощью множителей (от 10 –24 до 10 24) и приставок, правила написания обозначений единиц, правили образования когерентных производных единиц СИ

Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц СИ приведены в табл.

Множители и приставки, используемые для образования наименований и обозначений десятичных кратных и дольных единиц СИ

Десятичный множитель Приставка Обозначение приставки Десятичный множитель Приставка Обозначение приставки
межд. рус межд. русс
10 24 иотта Y И 10 –1 деци d д
10 21 зетта Z З 10 –2 санти c с
10 18 экса E Э 10 –3 милли m м
10 15 пета P П 10 –6 микро µ мк
10 12 тера T Т 10 –9 нано n н
10 9 гига G Г 10 –12 пико p п
10 6 мега M М 10 –15 фемто f ф
10 3 кило k к 10 –18 атто a а
10 2 гекто h г 10 –21 зепто z з
10 1 дека da да 10 –24 иокто y и

Когерентные производные единицы Международной системы единиц, как правило, образуют с помощью простейших уравнений связи между величинами (определяющих уравнений), в которых числовые коэффициенты равны 1. Для образования производных единиц обозначения величин в уравнениях связи заменяют обозначениями единиц СИ.

Если уравнение связи содержит числовой коэффициент, отличный от 1, то для образования когерентной производной единицы СИ в правую часть подставляют обозначения величин со значениями в единицах СИ, дающими после умножения на коэффициент общее числовое значение, равное 1.

Мощность, тепловой поток

Способ задания значений температуры - температурная шкала. Известно несколько температурных шкал.

  • Шкала Кельвина (по имени английского физика У. Томсона, лорда Кельвина).
    Обозначение единицы: К (не «градус Кельвина» и не °К).
    1 К = 1/273,16 - часть термодинамической температуры тройной точки воды, соответствующей термодинамическому равновесию системы, состоящей изо льда, воды и пара.
  • Шкала Цельсия (по имени шведского астронома и физика А. Цельсия).
    Обозначение единицы: °С.
    В этой шкале температура таяния льда при нормальном давлении принята равной 0°С, температура кипения воды - 100°С.
    Шкалы Кельвина и Цельсия связаны уравнением: t (°C) = Т (К) - 273,15.
  • Шкала Фаренгейта (Д. Г. Фаренгейт - немецкий физик).
    Обозначение единицы: °F . Применяется широко, в частности, в США.
    Шкала Фаренгейта и шкала Цельсия связаны: t (°F) = 1,8 · t (°C) + 32°C. По абсолютному значению 1 (°F) = 1 (°C).
  • Шкала Реомюра (по имени французского физика Р.А. Реомюра).
    Обозначение: °R и °r .
    Эта шкала почти вышла из употребления.
    Соотношение с градусом Цельсия: t (°R) = 0,8 · t (°C).
  • Шкала Рэнкина (Ранкина) - по имени шотландского инженера и физика У. Дж. Ранкина.
    Обозначение: °R (иногда: °Rank) .
    Шкала также применяется в США.
    Температура по шкале Рэнкина соотносится с температурой по шкале Кельвина: t (°R) = 9/5 · Т (К).

Основные температурные показатели в единицах измерения разных шкал:

Единица измерения в СИ - метр (м).

  • Внесистемная единица: Ангстрем (Å). 1Å = 1·10-10 м .
  • Дюйм (от голл. duim - большой палец); inch; in; ´´; 1´ = 25,4 мм .
  • Хэнд (англ. hand - рука); 1 hand = 101,6 мм .
  • Линк (англ. link - звено); 1 li = 201,168 мм .
  • Спэн (англ. span - пролет, размах); 1 span = 228,6 мм .
  • Фут (англ. foot - нога, fееt - футы); 1 ft = 304,8 мм .
  • Ярд (англ. yard - двор, загон); 1 yd = 914,4 мм .
  • Фатом, фэсом (англ. fathom - мера длины (= 6 ft), или мера объема древесины (= 216 ft 3), или горная мера площади (= 36 ft 2), или морская сажень (Ft)); fath или fth, или Ft, или ƒfm; 1 Ft = 1,8288 м .
  • Чейн (англ. chain - цепь); 1 ch = 66 ft = 22 yd = = 20,117 м .
  • Фарлонг (англ. furlong) - 1 fur = 220 yd = 1/8 мили .
  • Миля (англ. mile; международная). 1 ml (mi, MI) = 5280 ft = 1760 yd = 1609,344 м .

Единица измерения в СИ - м 2 .

  • Квадратный фут; 1 ft 2 (также sq ft) = 929,03 см 2 .
  • Квадратный дюйм; 1 in 2 (sq in) = 645,16 мм 2 .
  • Квадратный фатом (фэсом); 1 fath 2 (ft 2 ; Ft 2 ; sq Ft) = 3,34451 м 2 .
  • Квадратный ярд; 1 yd 2 (sq yd)= 0,836127 м 2 .

Sq (square) - квадратный.

Единица измерения в СИ - м 3 .

  • Кубический фут; 1 ft 3 (также cu ft) = 28,3169 дм 3 .
  • Кубический фатом; 1 fath 3 (fth 3 ; Ft 3 ; cu Ft) = 6,11644 м 3 .
  • Кубический ярд; 1 yd 3 (cu yd) = 0,764555 м 3 .
  • Кубический дюйм; 1 in 3 (cu in) = 16,3871 см 3 .
  • Бушель (Великобритания); 1 bu (uk, также UK) = 36,3687 дм 3 .
  • Бушель (США); 1 bu (us, также US) = 35,2391 дм 3 .
  • Галлон (Великобритания); 1 gal (uk, также UK) = 4,54609 дм 3 .
  • Галлон жидкостный (США); 1 gal (us, также US) = 3,78541 дм 3 .
  • Галлон сухой (США); 1 gal dry (us, также US) = 4,40488 дм 3 .
  • Джилл (gill); 1 gi = 0,12 л (США), 0,14 л (Великобритания) .
  • Баррель (США); 1bbl = 0,16 м 3 .

UK - United Kingdom - Соединенное Королевство (Великобритания); US - United Stats (США).


Удельный объем

Единица измерения в СИ - м 3 /кг.

  • Фут 3 /фунт; 1 ft3 / lb = 62,428 дм 3 /кг .

Единица измерения в СИ - кг.

  • Фунт (торговый) (англ. libra, pound - взвешива- ние, фунт); 1 lb = 453,592 г ; lbs - фунты. В системе старых русских мер 1 фунт = 409,512 г .
  • Гран (англ. grain - зерно, крупина, дробина); 1 gr = 64,799 мг .
  • Стоун (англ. stone - камень); 1 st = 14 lb = 6,350 кг .

Плотность, в т.ч. насыпная

Единица измерения в СИ - кг/м 3 .

  • Фунт/фут 3 ; 1 lb / ft 3 = 16,0185 кг/м 3 .


Линейная плотность

Единица измерения в СИ - кг/м.

  • Фунт/фут; 1 lb / ft = 1,48816 кг/м
  • Фунт/ярд; 1 lb / yd = 0,496055 кг/м


Поверхностная плотность

Единица измерения в СИ - кг/м 2 .

  • Фунт/фут 2 ; 1 lb / ft 2 (также lb / sq ft - pound per square foot) = 4,88249 кг/м 2 .

Линейная скорость

Единица измерения в СИ - м/с.

  • Фут/ч; 1 ft / h = 0,3048 м/ч .
  • Фут/с; 1 ft / s = 0,3048 м/с .

Единица измерения в СИ - м/с 2 .

  • Фут/с 2 ; 1 ft / s 2 = 0,3048 м/с 2 .

Массовый расход

Единица измерения в СИ - кг/с.

  • Фунт/ч; 1 lb / h = 0,453592 кг/ч .
  • Фунт/с; 1 lb / s = 0,453592 кг/с .


Объемный расход

Единица измерения в СИ - м 3 /с.

  • Фут 3 /мин; 1 ft 3 / min = 28,3168 дм 3 /мин .
  • Ярд 3 /мин; 1 yd 3 / min = 0,764555 дм 3 /мин .
  • Галлон/мин; 1 gal/ min (также GPM - gallon per min) = 3,78541 дм 3 /мин .


Удельный объемный расход

  • GPM/(sq·ft) - gallon (G) per (P) minute (M)/(square (sq) · foot (ft)) - галлон в минуту на квадратный фут;
    1 GPM/(sq · ft) = 2445 л/(м 2 · ч) · 1 л/(м 2 · ч) = 10 -3 м/ч.
  • gpd - gallons per day - галлоны в день (сут); 1 gpd = 0,1577 дм 3 /ч.
  • gpm - gallons per minute - галлоны в минуту; 1 gpm = 0,0026 дм 3 /мин.
  • gps - gallons per second - галлоны в секунду; 1 gps = 438 · 10 -6 дм 3 /с.


Расход сорбата (например, Cl 2) при фильтровании через слой сорбента (например активного угля)

  • Gals/cu ft (gal/ft 3) - gallons/cubic foot (галлоны на кубический фут); 1 Gals/cu ft = 0,13365 дм 3 на 1 дм 3 сорбента.

Единица измерения в СИ - Н.

  • Фунт-сила; 1 lbf - 4,44822 Н. (Аналог названия единицы измерения: килограмм-сила, кгс. 1 кгс = = 9,80665 · Н (точно). 1 lbf = 0,453592 (кг) · 9,80665 Н = = 4,44822 Н · 1Н=1 кг · м/с 2
  • Паундаль (англ.: poundal); 1 pdl = 0,138255 Н. (Паундаль - сила, сообщающая массе в один фунт ускорение в 1 фут/с 2 , lb · ft/ с 2 .)


Удельный вес

Единица измерения в СИ - Н/м 3 .

  • Фунт-сила/фут 3 ; 1 lbf/ft 3 = 157,087 Н/м 3 .
  • Паундаль/фут 3 ; 1 pdl/ft 3 = 4,87985 Н/м 3 .

Единица измерения в СИ - Па , кратные единицы: МПа, кПа .

Cпециалисты в своей работе продолжают применять устаревшие, отмененные или ранее факультативно допускаемые единицы измерения давления: кгс/см 2 ; бар; атм . (физическая атмосфера); ат (техническая атмосфера); ата; ати; м вод. ст.; мм рт. ст; торр .

Используются понятия: «абсолютное давление», «избыточное давление». Встречаются ошибки при переводе некоторых единиц измерения давления в Па и в его кратные единицы. Нужно учитывать, что 1 кгс/см 2 равен 98066,5 Па (точно), то есть для небольших (примерно до 14 кгс/см 2) давлений с достаточной для работы точностью можно принять: 1 Па = 1 кг/(м · с 2) = 1 Н/м 2 . 1 кгс/см 2 ≈ 105 Па = 0,1 МПа . Но уже при средних и высоких давлениях: 24 кгс/см 2 ≈ 23,5 · 105 Па = 2,35 МПа; 40 кгс/см 2 ≈ 39 · 105 Па = 3,9 МПа; 100 кгс/см 2 ≈ 98 · 105 Па = 9,8 МПа и т.д.

Соотношения:

  • 1 атм (физическая) ≈ 101325 Па ≈ 1,013 · 105 Па ≈ ≈ 0,1 МПа.
  • 1 ат (техническая) = 1 кгс/см 2 = 980066,5 Па ≈ ≈ 105 Па ≈ 0,09806 МПа ≈ 0,1 МПа.
  • 0,1 МПа ≈ 760 мм рт. ст. ≈ 10 м вод. ст. ≈ 1 бар.
  • 1 Торр (тор, tor) = 1 мм рт. ст.
  • Фунт-сила/дюйм 2 ; 1 lbf/in 2 = 6,89476 кПа (см. ниже: PSI).
  • Фунт-сила/фут 2 ; 1 lbf/ft 2 = 47,8803 Па.
  • Фунт-сила/ярд 2 ; 1 lbf/yd 2 = 5,32003 Па.
  • Паундаль/фут 2 ; 1 pdl/ft 2 = 1,48816 Па.
  • Фут водяного столба; 1 ft Н 2 О = 2,98907 кПа.
  • Дюйм водяного столба; 1 in Н 2 О = 249,089 Па.
  • Дюйм ртутного столба; 1 in Hg = 3,38639 кПа.
  • PSI (также psi) - pounds (P) per square (S) inch (I) - фунты на квадратный дюйм; 1 PSI = 1 lbƒ/in 2 = 6,89476 кПа.

Иногда в литературе встречается обозначение единицы измерения давления lb/in 2 - в этой единице учтено не lbƒ (фунт-сила), а lb (фунт-масса). Поэтому в численном выражении 1 lb/ in 2 несколько отличается от 1 lbf/ in 2 , так как при определении 1 lbƒ учтено: g = 9,80665 м/с 2 (на широте Лондона). 1 lb/in 2 = 0,454592 кг/(2,54 см) 2 = 0,07046 кг/см 2 = 7,046 кПа. Расчет 1 lbƒ - см. выше. 1 lbf/in 2 = 4,44822 Н/(2,54 см) 2 = 4,44822 кг · м/ (2,54 · 0,01 м) 2 · с 2 = 6894,754 кг/ (м · с 2) = 6894,754 Па ≈ 6,895 кПа.

Для практических расчетов можно принять: 1 lbf/in 2 ≈ 1 lb/in 2 ≈ 7 кПа. Но, по сути, равенство неправомерно, как и 1 lbƒ = 1 lb, 1 кгс = 1 кг. PSIg (psig) - то же, что PSI, но указывает избыточное давление; PSIa (psia) - то же, что PSI, но акцентирует: давление абсолютное; а - absolute, g - gauge (мера, размер).


Напор воды

Единица измерения в СИ - м.

  • Напор в футах (feet-head); 1 ft hd = 0,3048 м


Потери давления во время фильтрования

  • PSI/ft - pounds (P) per square (S) inch (I)/foot (ft) - фунты на квадратный дюйм/фут; 1 PSI/ft = 22,62 кПа на 1 м фильтрующего слоя.

Единица измерения в СИ - Джоуль (по имени английского физика Дж. П. Джоуля).

  • 1 Дж - механическая работа силы 1 Н при перемещении тела на расстояние 1 м.
  • Ньютон (Н) - единица силы и веса в СИ; 1 Н ра вен силе, сообщающей телу массой 1 кг ускорение 1 м 2 /с в направлении действия силы. 1 Дж = 1 Н · м .

В теплотехнике продолжают применять отмененную единицу измерения количества теплоты - калорию (кал, cal).

  • 1 Дж (J) = 0,23885 кал. 1 кДж = 0,2388 ккал.
  • 1 lbf · ft (фунт-сила-фут) = 1,35582 Дж.
  • 1 pdl · ft (паундаль-фут) = 42,1401 мДж.
  • 1 Btu (британская единица теплоты) = 1,05506 кДж (1 кДж = 0,2388 ккал).
  • 1 Therm (терма - британская большая калория) = 1 · 10 -5 Btu.

МОЩНОСТЬ, ТЕПЛОВОЙ ПОТОК

Единица измерения в СИ - Ватт (Вт) - по имени английского изобретателя Дж. Уатта - механическая мощность, при которой за время 1 с совершается работа в 1 Дж, или тепловой поток, эквивалентный механической мощности в 1 Вт.

  • 1 Вт (W) = 1 Дж/с = 0,859985 ккал/ч (kcal / h).
  • 1 lbf · ft / s (фунт-сила-фут/с) = 1,33582 Вт.
  • 1 lbf · ft / min (фунт-сила-фут/мин) = 22,597 мВт.
  • 1 lbf · ft / h (фунт-сила-фут/ч) = 376,616 мкВт.
  • 1 pdl · ft / s (паундаль-фут/с) = 42,1401 мВт.
  • 1 hp (лошадиная сила британская / с) = 745,7 Вт.
  • 1 Btu/s (британская единица теплоты / с) = 1055,06 Вт.
  • 1 Btu/h (британская единица теплоты / ч) = 0,293067 Вт.


Поверхностная плотность теплового потока

Единица измерения в СИ - Вт/м 2 .

  • 1 Вт/м 2 (W/м 2) = 0,859985 ккал /(м 2 · ч) (kcal /(m 2 · h)).
  • 1 Btu/(ft 2 · ч) = 2,69 ккал/(м 2 · ч) = 3,1546 кВт/м 2 .

Динамическая вязкость (коэффициент вязкости), η.

Единица измерения в СИ - Па · с . 1 Па · с = 1 Н · с/м 2 ;
внесистемная единица - пуаз (П) . 1 П = 1 дин · с/м 2 = 0,1 Па·с.

  • Дина (dyn) - (от греч. dynamic - сила). 1 дин = 10 -5 Н = 1 г · см/с 2 = 1,02 · 10 -6 кгс.
  • 1 lbf · h / ft 2 (фунт-сила-ч/фут 2) = 172,369 кПа · с.
  • 1 lbf · s / ft 2 (фунт-сила-с/фут 2) = 47,8803 Па · с.
  • 1 pdl · s / ft 2 (паундаль-с/фут 2) = 1,48816 Па · с.
  • 1 slug /(ft · s) (слаг/(фут · с)) = 47,8803 Па · с. Slug (слаг) - техническая единица массы в английской системе мер.

Кинематическая вязкость, ν.

Единица измерения в СИ - м 2 /с ; Единица см 2 /с называется «Стокс» (по имени английского физика и математика Дж. Г. Стокса).

Кинематическая и динамическая вязкости связаны равенством: ν = η / ρ, где ρ - плотность, г/см 3 .

  • 1 м 2 /с = Стокс / 104.
  • 1 ft 2 /h (фут 2 /ч) = 25,8064 мм 2 /с.
  • 1 ft 2 /s (фут 2 /с) = 929,030 см 2 /с.

Единица напряженности магнитного поля в СИ - А/м (Ампер/метр). Ампер (А) - фамилия французского физика А.М. Ампера.

Ранее применялась единица Эрстед (Э) - по имени датского физика Х.К. Эрстеда.
1 А/м (A/m, At/m) = 0,0125663 Э (Ое)

Сопротивление раздавливанию и истиранию ми неральных фильтрующих материалов и вообще всех минералов и горных пород косвенно определяют по шкале Мооса (Ф. Моос - немецкий минералог).

В этой шкале числами в возрастающем порядке обозначают минералы, расположенные таким образом, чтобы каждый последующий был способен оставлять царапину на предыдущем. Крайние вещества в шкале Мооса: тальк (единица твердости - 1, самый мягкий) и алмаз (10, самый твердый).

  • Твердость 1-2,5 (чертятся ногтем): волсконкоит, вермикулит, галит, гипс, глауконит, графит, глинистые материалы, пиролюзит, тальк и др.
  • Твердость >2,5-4,5 (не чертятся ногтем, но чертятся стеклом): ангидрит, арагонит, барит, глауконит, доломит, кальцит, магнезит, мусковит, сидерит, халькопирит, шабазит и др.
  • Твердость >4,5-5,5 (не чертятся стеклом, но чертятся стальным ножом): апатит, вернадит, нефелин, пиролюзит, шабазит и др.
  • Твердость >5,5-7,0 (не чертятся стальным ножом, но чертятся кварцем): вернадит, гранат, ильменит, магнетит, пирит, полевые шпаты и др.
  • Твердость >7,0 (не чертятся кварцем): алмаз, гранаты, корунд и др.

Твердость минералов и горных пород можно определять также по шкале Кнупа (А. Кнуп - немецкий минералог). В этой шкале значения определяются по размеру отпечатка, оставляемого на минерале при вдавливании в его образец алмазной пирамиды под определенной нагрузкой.

Соотношения показателей по шкалам Мооса (М) и Кнупа (К):

Единица измерения в СИ - Бк (Беккерель, названный в честь французского физика А.А. Беккереля).

Бк (Bq) - единица активности нуклида в радиоактивном источнике (активность изотопа). 1 Бк равен активности нуклида, при которой за 1 с происходит один акт распада.

Концентрация радиоактивности: Бк/м 3 или Бк/л.

Активность - это число радиоактивных распадов в единицу времени. Активность, приходящаяся на единицу массы, называется удельной.

  • Кюри (Ku, Ci, Cu) - единица активности нуклида в радиоактивном источнике (активности изотопа). 1 Ku - это активность изотопа, в котором за 1 с происходит 3,7000 · 1010 актов распада. 1 Ku = 3,7000 · 1010 Бк.
  • Резерфорд (Рд, Rd) - устаревшая единица активности нуклидов (изотопов) в радиоактивных источниках, названная в честь английского физика Э. Резерфорда. 1 Рд = 1 · 106 Бк = 1/37000 Ки .


Доза излучения

Доза излучения - энергия ионизирующего излучения, поглощенная облучаемым веществом и рассчитанная на единицу его массы (поглощенная доза). Доза накапливается со временем облучения. Мощность дозы ≡ Доза/время.

Единица поглощенной дозы в СИ - Грэй (Гр, Gy) . Внесистемная единица - Рад (rad), соответствующая энергии излучения в 100 эрг, поглощенной веществом массой 1 г.

Эрг (erg - от греч.: ergon - работа) - единица работы и энергии в нерекомендуемой системе СГС.

  • 1 эрг = 10 -7 Дж = 1,02 · 10 -8 кгс · м = 2,39 · 10 -8 кал = 2,78 · 10 -14 кВт · ч.
  • 1 рад (rad) = 10 -2 Гр.
  • 1 рад (rad) = 100 эрг/г = 0,01 Гр = 2,388 · 10 -6 кал/г = 10 -2 Дж/кг.

Керма (сокр. англ.: kinetic energy released in matter) - кинетическая энергия, освобожденная в веществе, измеряется в грэях.

Эквивалентная доза определяется сравнением излучения нуклидов с рентгеновским излучением. Коэффициент качества излучения (К) показывает, во сколько раз радиационная опасность в случае хронического облучения человека (в сравнительно малых дозах) для данного вида излучения больше, чем в случае рентгеновского излучения при одинаковой поглощенной дозе. Для рентгеновского и γ-излучения К = 1. Для всех других видов излучений К устанавливается по радиобиологическим данным.

Дэкв = Дпогл · К.

Единица поглощенной дозы в СИ - 1 Зв (Зиверт) = 1 Дж/кг = 102 бэр.

  • БЭР (бэр, ri - до 1963 г. определялась как биологический эквивалент рентгена) - единица эквивалентной дозы ионизирующего излучения.
  • Рентген (Р, R) - единица измерения, экспозиционная доза рентгеновского и γ-излучения. 1 Р = 2,58 · 10 -4 Кл/кг .
  • Кулон (Кл) - единица в системе СИ, количество электричества, электрический заряд. 1 бэр = 0,01 Дж/кг .

Мощность эквивалентной дозы - Зв/с.

Проницаемость пористых сред (в том числе горных пород и минералов)

Дарси (Д) - по имени французского инженера А. Дарси, darsy (D) · 1 Д = 1,01972 мкм 2 .

1 Д - проницаемость такой пористой среды, при фильтрации через образец которой площадью 1 см 2 , толщиной 1 см и перепаде давления 0,1 МПа расход жидкости вязкостью 1 сП равен 1 см 3 /с.

Размеры частиц, зерен (гранул) фильтрующих материалов по СИ и стандартам других стран

В США, Канаде, Великобритании, Японии, Франции и Германии размеры зерен оценивают в мешах (англ. mesh - отверстие, ячейка, сеть), то есть по количеству (числу) отверстий, приходящихся на один дюйм самого мелкого сита, через которое могут пройти зерна. И эффективным диаметром зерен считается размер отверстия в мкм. В последние годы чаще применяются системы мешей США и Великобритании.

Соотношение между единицами измерения размеров зерен (гранул) фильтрующих материалов по СИ и стандартам других стран:

Массовая доля

Массовая доля показывает, какое массовое количество вещества содержится в 100 массовых частях раствора. Единицы измерения: доли единицы; проценты (%); промилле (‰); миллионные доли (млн -1).

Концентрация растворов и растворимость

Концентрацию раствора нужно отличать от растворимости - концентрации насыщенного раствора, которая выражается массовым количеством вещества в 100 массовых частях растворителя (например г/100 г).

Объемная концентрация

Объемная концентрация - это массовое количество растворенного вещества в определенном объеме раствора (например: мг/л, г/м 3).

Молярная концентрация

Молярная концентрация - количество молей данного вещества, растворенного в определенном объеме раствора (моль/м 3 , ммоль/л, мкмоль/мл).

Моляльная концентрация

Моляльная концентрация - число молей вещества, содержащегося в 1000 г растворителя (моль/кг).

Нормальный раствор

Нормальным называется раствор, содержащий в единице объема один эквивалент вещества, выраженный в массовых единицах: 1Н = 1 мг · экв/л = = 1 ммоль/л (с указанием эквивалента конкретного вещества).

Эквивалент

Эквивалент равен отношению части массы элемента (вещества), которая присоединяет или замещает в химическом соединении одну атомную массу водорода или половину атомной массы кислорода, к 1/12 массы углерода 12 . Так, эквивалент кислоты равен ее молекулярной массе, выраженной в граммах, деленной на основность (число ионов водорода); эквивалент основания - молекулярная масса, деленная на кислотность (число ионов водорода, а у неорганических оснований - деленная на число гидроксильных групп); эквивалент соли - молекулярная масса, деленная на сумму зарядов (валентность катионов или анионов); эквивалент соединения, участвующего в окислительно-восстановительных реакциях, - это частное от деления молекулярной массы соединения на число электронов, принятых (отданных) атомом восстанавливающегося (окисляющегося) элемента.

Соотношения между единицами измерения концентрации растворов
(Формулы перехода от одних выражений концентраций растворов к другим):

Принятые обозначения:

  • ρ - плотность раствора, г/см 3 ;
  • m - молекулярная масса растворенного вещества, г/моль;
  • Э - эквивалентная масса растворенного вещества, то есть количество вещества в граммах, взаимодействующее в данной реакции с одним грамматомом водорода или отвечающее переходу одного электрона.

Согласно ГОСТ 8.417-2002 единица количества вещества установлена: моль , кратные и дольные единицы (кмоль, ммоль, мкмоль ).

Единица измерения жесткости в СИ - ммоль/л; мкмоль/л.

В разных странах часто продолжают использовать отмененные единицы измерения жесткости воды:

  • Россия и страны СНГ - мг-экв/л, мкг-экв/л, г-экв/м 3 ;
  • Германия, Австрия, Дания и некоторые другие страны германской группы языков - 1 немецкий градус - (Н° - Harte - жесткость) ≡ 1 ч. СаО/100 тыс. ч. воды ≡ 10 мг СаО/л ≡ 7,14 мг MgO/л ≡ 17,9 мг СаСО 3 /л ≡ 28,9 мг Са(НСО 3) 2 /л ≡ 15,1 мг MgCO 3 /л ≡ 0,357 ммоль/л.
  • 1 французский градус ≡ 1 ч. СаСО 3 /100 тыс. ч. воды ≡ 10 мг СаСО 3 /л ≡ 5,2 мг СаО/л ≡ 0,2 ммоль/л.
  • 1 английский градус ≡ 1 гран/1галлон воды ≡ 1 ч. СаСО 3 /70 тыс. ч. воды ≡ 0,0648 г СаСО 3 /4,546 л ≡ 100 мг СаСО3 /7 л ≡ 7,42 мг СаО/л ≡ 0,285 ммоль/л. Иногда английский градус жесткости обозначают Clark.
  • 1 американский градус ≡ 1 ч. СаСО 3 /1 млн ч. воды ≡ 1 мг СаСО 3 /л ≡ 0,52 мг СаО/л ≡ 0,02 ммоль/л.

Здесь: ч. - часть; перевод градусов в соответствующие им количества СаО, MgO, CaCO 3 , Ca(HCO 3) 2 , MgCO 3 показан в качестве примеров в основном для немецких градусов; размерности градусов привязаны к кальцийсодержащим соединениям, так как в составе ионов жесткости кальций, как правило, составляет 75-95%, в редких случаях - 40-60%. Числа округлены в основном до второго знака после запятой.

Соотношение между единицами измерения жесткости воды:

1 ммоль/л = 1 мг · экв/л = 2,80°Н (немецкий градус) = 5,00 французского градуса = 3,51 английского градуса = 50,04 американского градуса.

Новая единица измерения жесткости воды - российский градус жесткости - °Ж, определяемый как концентрация щелочноземельного элемента (преимущественно Са 2+ и Mg 2+), численно равная ½ его моля в мг/дм 3 (г/м 3).

Единицы измерения щелочности - ммоль, мкмоль.

Единица измерения электропроводимости в СИ - мкСм/см.

Электропроводимость растворов и обратное ей электросопротивление характеризуют минерализацию растворов, но только - наличие ионов. При измерении электропроводимости не могут быть учтены неионогенные органические вещества, нейтральные взвешенные примеси, помехи, искажающие результаты, - газы и др. Невозможно расчетным путем точно найти соответствие между значениями удельной электропроводимости и сухим остатком или даже суммой всех отдельно определенных веществ раствора, так как в природной воде разные ионы имеют разную удельную электропроводимость, которая одновременно зависит от минерализации раствора и его температуры. Чтобы установить такую зависимость, необходимо несколько раз в году экспериментально устанавливать соотношение между этими величинами для каждого конкретного объекта.

  • 1 мкСм/см = 1 · МOм · см; 1 См/м = 1 · Ом · м.

Для чистых растворов хлорида натрия (NаСl) в дистилляте приблизительное соотношение:

  • 1 мкСм/см ≈ 0,5 мг NаСl/л.

Это же соотношение (приближенно) с учетом приведенных оговорок может быть принято для большей части природных вод с минерализацией до 500 мг/л (все соли пересчитываются на NаСl).

При минерализации природной воды 0,8-1,5 г/л можно принять:

  • 1 мкСм/см ≈ 0,65 мг солей/л,

а при минерализации - 3-5 г/л:

  • 1 мкСм/см ≈ 0,8 мг солей/л.

Содержание в воде взвешенных примесей, прозрачность и мутность воды

Мутность воды выражают в единицах:

  • JTU (Jackson Turbidity Unit) - единица мутности по Джексону;
  • FTU (Formasin Turbidity Unit, обозначается также ЕМФ) - единица мутности по формазину;
  • NTU (Nephelometric Turbidity Unit) - единица мутности нефелометрическая.

Дать точное соотношение единиц мутности и содержания взвешенных веществ невозможно. Для каждой серии определений нужно строить калибровочный график, позволяющий определять мутность анализируемой воды по сравнению с контрольным образцом.

Приблизительно можно представить: 1 мг/л (взвешенных веществ) ≡ 1-5 единиц NTU.

Если у замутняющей смеси (диатомовая земля) крупность частиц - 325 меш, то: 10 ед. NTU ≡ 4 ед. JTU.

ГОСТ 3351-74 и СанПиНы 2.1.4.1074-01 приравнивают 1,5 ед. NTU (или 1,5 мг/л по кремнезему или каолину) 2,6 ед. FTU (ЕМФ).

Соотношение между прозрачностью по шрифту и мутностью:

Соотношение между прозрачностью по «кресту» (в см) и мутностью (в мг/л):

Единица измерения в СИ - мг/л, г/м 3 , мкг/л.

В США и в некоторых других странах минерализацию выражают в относительных единицах (иногда в гранах на галлоны, gr/gal):

  • ppm (parts per million) - миллионная доля (1 · 10 -6) единицы; иногда ppm (parts per millе) обозначают и тысячную долю (1 · 10 -3) единицы;
  • ррb - (parts per billion) биллионная (миллиардная) доля (1 · 10 -9) единицы;
  • ррt - (parts per trillion) триллионная доля (1 · 10 -12) единицы;
  • ‰ - промилле (применяется и в России) - тысячная доля (1 · 10 -3) единицы.

Соотношение между единицами измерения минерализации: 1мг/л = 1ррm = 1 · 10 3 ррb = 1 · 10 6 ррt = 1 · 10 -3 ‰ = 1 · 10 -4 %; 1 gr/gal = 17,1 ppm = 17,1 мг/л = 0,142 lb/1000 gal.

Для измерения минерализации соленых вод, рассолов и солесодержания конденсатов правильнее применять единицы: мг/кг . В лабораториях пробы воды отмеряют объемными, а не массовыми долями, поэтому целесообразно в большинстве случаев количество примесей относить к литру. Но для больших или очень малых значений минерализации ошибка будет чувсвительной.

По СИ объем измеряется в дм 3 , но допускается и измерение в литрах , потому что 1 л = 1,000028 дм 3 . С 1964г. 1 л приравнен к 1 дм 3 (точно).

Для соленых вод и рассолов иногда применяют единицы измерения солености в градусах Боме (для минерализации >50 г/кг):

  • 1°Ве соответствует концентрации раствора, равной 1% в пересчете на NаСl.
  • 1% NаСl = 10 г NаСl/кг.


Сухой и прокаленный остаток

Сухой и прокаленный остаток измеряются в мг/л. Сухой остаток не в полной мере характеризует минерализацию раствора, так как условия его определения (кипячение, сушка твердого остатка в печи при температуре 102-110°С до постоянной массы) искажают результат: в частности, часть бикарбонатов (условно принимается - половина) разлагается и улетучивается в виде СО 2 .


Десятичные кратные и дольные единицы измерения величин

Десятичные кратные и дольные единицы измерения величин, а также их наименования и обозначения следует образовывать с помощью множителей и приставок, приведенных в таблице:

(по материалам сайта https://aqua-therm.ru/).

Загрузка...