Медицинский портал. Щитовидная железа, Рак, диагностика

Как выглядит параллелепипед. Прямоугольный параллелепипед

Параллелепипед – это геометрическая фигура, все 6 граней которой представляют собой параллелограммы.

В зависимости от вида этих параллелограммов различают следующие виды параллелепипеда:

  • прямой;
  • наклонный;
  • прямоугольный.

Прямым параллелепипедом называют четырехугольную призму, ребра которой составляют с плоскостью основания угол 90 °.

Прямоугольным параллелепипедом называют четырехугольную призму, все грани которой являются прямоугольниками. Куб есть разновидность четырехугольной призмы, у которой все грани и ребра равны между собой.

Особенности фигуры предопределяют ее свойства. К ним относят 4 следующих утверждений:


Запомнить все приведенные свойства просто, они легки для понимания и выводятся логически исходя из вида и особенностей геометрического тела. Однако, незамысловатые утверждения могут быть невероятно полезны при решении типовых заданий ЕГЭ и позволят сэкономить время необходимое для прохождения теста.

Формулы параллелепипеда

Для поиска ответов на поставленную задачу недостаточно знать только свойства фигуры. Также могут понадобиться и некоторые формулы для нахождения площади и объема геометрического тела.

Площадь оснований находится также как и соответствующий показатель параллелограмма или прямоугольника. Выбирать основание параллелограмма можно самостоятельно. Как правило, при решении задач проще работать с призмой, в основании которой лежит прямоугольник.

Формула нахождения боковой поверхности параллелепипеда, также может понадобиться в тестовых заданиях.

Примеры решения типовых заданий ЕГЭ

Задание 1.

Дано : прямоугольный параллелепипед с измерениями 3, 4 и 12 см.
Необходимо найти длину одной из главных диагоналей фигуры.
Решение : Любое решение геометрической задачи должно начинаться с построения правильного и четкого чертежа, на котором будет обозначено «дано» и искомая величина. На рисунке ниже приведен пример правильного оформления условий задания.

Рассмотрев сделанный рисунок и вспомнив все свойства геометрического тела, приходим к единственно верному способу решения. Применив 4 свойство параллелепипеда, получим следующее выражение:

После несложных вычислений получим выражение b2=169, следовательно, b=13. Ответ задания найден, на его поиск и чертеж необходимо потратить не более 5 минут.

На этом уроке все желающие смогут изучить тему «Прямоугольный параллелепипед». В начале урока мы повторим, что такое произвольный и прямой параллелепипеды, вспомним свойства их противоположных граней и диагоналей параллелепипеда. Затем рассмотрим, что такое прямоугольный параллелепипед, и обсудим его основные свойства.

Тема: Перпендикулярность прямых и плоскостей

Урок: Прямоугольный параллелепипед

Поверхность, составленная из двух равных параллелограммов АВСD и А 1 В 1 С 1 D 1 и четырех параллелограммов АВВ 1 А 1 , ВСС 1 В 1 , СDD 1 С 1 , DАА 1 D 1 , называется параллелепипедом (рис. 1).

Рис. 1 Параллелепипед

То есть: имеем два равных параллелограмма АВСD и А 1 В 1 С 1 D 1 (основания), они лежат в параллельных плоскостях так, что боковые ребра АА 1 , ВВ 1 , DD 1 , СС 1 параллельны. Таким образом, составленная из параллелограммов поверхность называется параллелепипедом .

Таким образом, поверхность параллелепипеда - это сумма всех параллелограммов, из которых составлен параллелепипед.

1. Противоположные грани параллелепипеда параллельны и равны.

(фигуры равны, то есть их можно совместить наложением)

Например:

АВСD = А 1 В 1 С 1 D 1 (равные параллелограммы по определению),

АА 1 В 1 В = DD 1 С 1 С (так как АА 1 В 1 В и DD 1 С 1 С - противоположные грани параллелепипеда),

АА 1 D 1 D = ВВ 1 С 1 С (так как АА 1 D 1 D и ВВ 1 С 1 С - противоположные грани параллелепипеда).

2. Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Диагонали параллелепипеда АС 1 , В 1 D, А 1 С, D 1 В пересекаются в одной точке О, и каждая диагональ делится этой точкой пополам (рис. 2).

Рис. 2 Диагонали параллелепипеда пересекаются и деляться точкой пересечения пополам.

3. Имеются три четверки равных и параллельных ребер параллелепипеда : 1 - АВ, А 1 В 1 , D 1 C 1 , DC, 2 - AD, A 1 D 1 , B 1 C 1 , BC, 3 - АА 1 , ВВ 1 , СС 1 , DD 1 .

Определение. Параллелепипед называется прямым, если его боковые ребра перпендикулярны основаниям.

Пусть боковое ребро АА 1 перпендикулярно основанию (рис. 3). Это означает, что прямая АА 1 перпендикулярна прямым АD и АВ, которые лежат в плоскости основания. А, значит, в боковых гранях лежат прямоугольники. А в основаниях лежат произвольные параллелограммы. Обозначим, ∠BAD = φ, угол φ может быть любым.

Рис. 3 Прямой параллелепипед

Итак, прямой параллелепипед - это параллелепипед, в котором боковые ребра перпендикулярны основаниям параллелепипеда.

Определение. Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию. Основания являются прямоугольниками.

Параллелепипед АВСDА 1 В 1 С 1 D 1 - прямоугольный (рис. 4), если:

1. АА 1 ⊥ АВСD (боковое ребро перпендикулярно плоскости основания, то есть параллелепипед прямой).

2. ∠ВАD = 90°, т. е. в основании лежит прямоугольник.

Рис. 4 Прямоугольный параллелепипед

Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда. Но есть дополнительные свойства, которые выводятся из определения прямоугольного параллелепипеда.

Итак, прямоугольный параллелепипед - это параллелепипед, у которого боковые ребра перпендикулярны основанию. Основание прямоугольного параллелепипеда - прямоугольник .

1. В прямоугольном параллелепипеде все шесть граней прямоугольники.

АВСD и А 1 В 1 С 1 D 1 - прямоугольники по определению.

2. Боковые ребра перпендикулярны основанию . Значит, все боковые грани прямоугольного параллелепипеда - прямоугольники.

3. Все двугранные углы прямоугольного параллелепипеда прямые.

Рассмотрим, например, двугранный угол прямоугольного параллелепипеда с ребром АВ, т. е. двугранный угол между плоскостями АВВ 1 и АВС.

АВ - ребро, точка А 1 лежит в одной плоскости - в плоскости АВВ 1 , а точка D в другой - в плоскости А 1 В 1 С 1 D 1 . Тогда рассматриваемый двугранный угол можно еще обозначить следующим образом: ∠А 1 АВD.

Возьмем точку А на ребре АВ. АА 1 - перпендикуляр к ребру АВ в плоскости АВВ- 1 , AD перпендикуляр к ребру АВ в плоскости АВС. Значит, ∠А 1 АD - линейный угол данного двугранного угла. ∠А 1 АD = 90°, значит, двугранный угол при ребре АВ равен 90°.

∠(АВВ 1 , АВС) = ∠(АВ) = ∠А 1 АВD= ∠А 1 АD = 90°.

Аналогично доказывается, что любые двугранные углы прямоугольного параллелепипеда прямые.

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Примечание. Длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда, являются измерениями прямоугольного параллелепипеда. Их иногда называют длина, ширина, высота.

Дано: АВСDА 1 В 1 С 1 D 1 - прямоугольный параллелепипед (рис. 5).

Доказать: .

Рис. 5 Прямоугольный параллелепипед

Доказательство:

Прямая СС 1 перпендикулярна плоскости АВС, а значит, и прямой АС. Значит, треугольник СС 1 А - прямоугольный. По теореме Пифагора:

Рассмотрим прямоугольный треугольник АВС. По теореме Пифагора:

Но ВС и AD - противоположные стороны прямоугольника. Значит, ВС = AD. Тогда:

Так как , а , то. Поскольку СС 1 = АА 1 , то что и требовалось доказать.

Диагонали прямоугольного параллелепипеда равны.

Обозначим измерения параллелепипеда АВС как a, b, c (см. рис. 6), тогда АС 1 = СА 1 = В 1 D = DВ 1 =

В переводе с греческого языка параллелограмм означает плоскость. Параллелепипед – это призма, в основании которой лежит параллелограмм. Существуют пять типов параллелограмма: наклонный, прямой и прямоугольный параллелепипед. Куб и ромбоэдр также относятся к параллелепипеду и являются его разновидностью.

Перед тем как перейти к основным понятиям, дадим некоторые определения:

  • Диагональю параллелепипеда является отрезок, который объединяет вершины параллелепипеда, находящиеся напротив друг друга.
  • Если две грани имеют общее ребро, то можно назвать их смежными ребрами. Если же общего ребра нет, то грани именуются противоположными.
  • Две вершины, не лежащие на одной грани, именуются противоположными.

Какие свойства имеет параллелепипед?

  1. Лежащие на противоположных сторонах грани параллелепипеда параллельны друг другу и равны между собой.
  2. Если провести диагонали из одной вершины в другую, то точка пересечения этих диагоналей разделит их пополам.
  3. Стороны параллелепипеда лежащие под одним и тем же углом к основанию будут равны. Другими словами, углы сонаправленных сторон будут равны между собой.

Какие виды параллелепипеда бывают?

Теперь разберёмся в том, какие параллелепипеды бывают. Как уже упомянуто выше, существует несколько типов этой фигуры: прямой, прямоугольный, наклонный параллелепипед, а также куб и ромбоэдр. Чем же они отличаются между собой? Все дело в образующих их плоскостях и углах, которые они образуют.

Разберемся более подробно с каждым из перечисленных видов параллелепипеда.

  • Как уже понятно из названия, наклонный параллелепипед имеет наклонные грани, а именно такие грани, которые находятся по отношению к основанию не под углом 90 градусов.
  • А вот у прямого параллелепипеда угол между основанием и гранью как раз составляет девяносто градусов. Именно по этой причине этот вид параллелепипеда имеет такое название.
  • Если же все грани параллелепипеда – это одинаковые квадраты, то можно считать эту фигуру кубом.
  • Прямоугольный параллелепипед получил такое название из-за образующих его плоскостей. Если все они являются прямоугольниками (и основание в том числе), то это прямоугольный параллелепипед. Такой вид параллелепипеда встречается не так часто. В переводе с греческого ромбоэдр означает грань или основание. Так называют трехмерную фигуру, у которой гранями являются ромбы.



Основные формулы для параллелепипеда

Объём параллелепипеда равен произведению площади основания на его высоту, перпендикулярную основанию.

Площадь боковой поверхности будет равна произведению периметра основания на высоту.
Зная основные определения и формулы можно вычислить площадь основания и объём. Основание можно выбрать по своему усмотрению. Однако, как правило, в качестве основания используется прямоугольник.

Цели урока:

1. Образовательные:

Ввести понятие параллелепипеда и его видов;
- сформулировать (используя аналогию с параллелограммом и прямоугольником) и доказать свойства параллелепипеда и прямоугольного параллелепипеда;
- повторить вопросы, связанные с параллельностью и перпендикулярностью в пространстве.

2. Развивающие:

Продолжить развитие у учащихся таких познавательных процессов, как восприятие, осмысление, мышление, внимание, память;
- способствовать развитию у учащихся элементов творческой деятельности как качеств мышления (интуиция, пространственное мышление);
- формировать у учащихся умение делать выводы, в том числе – по аналогии, что помогает осознать внутрипредметные связи в геометрии.

3. Воспитательные:

Способствовать воспитанию организованности, привычки к систематическому труду;
- способствовать формированию эстетических навыков при оформлении записей, выполнения чертежей.

Тип урока: урок-изучение нового материала (2 часа).

Структура урока:

1. Организационный момент.
2. Актуализация знаний.
3. Изучение нового материала.
4. Подведение итогов и постановка домашнего задания.

Оборудование: плакаты (слайды) с доказательствами, модели различных геометрических тел, в том числе – все виды параллелепипедов, графопроектор.

Ход урока.

1. Организационный момент.

2. Актуализация знаний.

Сообщение темы урока, формулировка вместе с учащимися цели и задач, показ практической значимости изучения темы, повторение ранее изученных вопросов, связанных с данной темой.

3. Изучение нового материала.

3.1. Параллелепипед и его виды.

Демонстрируются модели параллелепипедов с выявлением их особенностей, помогающих сформулировать определение параллелепипеда, используя понятие призмы.

Определение:

Параллелепипедом называется призма, основанием которой является параллелограмм.

Выполняется чертёж параллелепипеда (рисунок 1), перечисляются элементы параллелепипеда как частного случая призмы. Демонстрируется слайд 1.

Схематическая запись определения:

Формулируются выводы из определения:

1) Если ABCDA 1 B 1 C 1 D 1 – призма и ABCD – параллелограмм, то ABCDA 1 B 1 C 1 D 1 – параллелепипед .

2) Если ABCDA 1 B 1 C 1 D 1 – параллелепипед , то ABCDA 1 B 1 C 1 D 1 – призма и ABCD – параллелограмм.

3) Если ABCDA 1 B 1 C 1 D 1 – не призма или ABCD – не параллелограмм, то
ABCDA 1 B 1 C 1 D 1 – не параллелепипед .

4) . Если ABCDA 1 B 1 C 1 D 1 – не параллелепипед , то ABCDA 1 B 1 C 1 D 1 – не призма или ABCD – не параллелограмм.

Далее рассматриваются частные случаи параллелепипеда с построением схемы классификации (см. рис.3), демонстрируются модели и выделяются характеристические свойства прямого и прямоугольного параллелепипедов, формулируются их определения.

Определение:

Параллелепипед называется прямым, если его боковые рёбра перпендикулярны к основанию.

Определение:

Параллелепипед называется прямоугольным , если его боковые рёбра перпендикулярны к основанию, а основанием является прямоугольник (см. рисунок 2).

После записи определений в схематичном виде формулируются выводы из них.

3.2. Свойства параллелепипедов.

Поиск планиметрических фигур, пространственными аналогами которых являются параллелепипед и прямоугольный параллелепипед (параллелограмм и прямоугольник). В данном случае имеем дело с визуальным сходством фигур. Используя правило вывода по аналогии, заполняются таблицы.

Правило вывода по аналогии:

1. Выбрать среди ранее изученных фигур фигуру, аналогичную данной.
2. Сформулировать свойство выбранной фигуры.
3. Сформулировать аналогичное свойство исходной фигуры.
4. Доказать или опровергнуть сформулированное утверждение.

После формулировки свойств проводится доказательство каждого из них по следующей схеме:

  • обсуждение плана доказательства;
  • демонстрация слайда с доказательством (слайды 2 – 6);
  • оформление учащимися доказательства в тетрадях.

3.3 Куб и его свойства.

Определение: Куб – это прямоугольный параллелепипед, у которого все три измерения равны.

По аналогии с параллелепипедом учащиеся самостоятельно делают схематическую запись определения, выводят следствия из него и формулируют свойства куба.

4. Подведение итогов и постановка домашнего задания.

Домашнее задание:

  1. Используя конспект урока, по учебнику геометрии для 10-11 классов, Л.С. Атанасян и др., изучить гл.1, §4, п.13, гл.2, §3, п.24.
  2. Доказать или опровергнуть свойство параллелепипеда, п.2 таблицы.
  3. Ответить на контрольные вопросы.

Контрольные вопросы.

1. Известно, что только две боковые грани параллелепипеда перпендикулярны основанию. Какого вида параллелепипед?

2. Сколько боковых граней прямоугольной формы может иметь параллелепипед?

3. Возможен ли параллелепипед, у которого только одна боковая грань:

1) перпендикулярна основанию;
2) имеет форму прямоугольника.

4. В прямом параллелепипеде все диагонали равны. Является ли он прямоугольным?

5. Верно ли, что в прямом параллелепипеде диагональные сечения перпендикулярны плоскостям основания?

6. Сформулируйте теорему, обратную теореме о квадрате диагонали прямоугольного параллелепипеда.

7. Какие дополнительные признаки отличают куб от прямоугольного параллелепипеда?

8. Будет ли кубом параллелепипед, в котором равны все рёбра при одной из вершин?

9. Сформулируйте теорему о квадрате диагонали прямоугольного параллелепипеда для случая куба.

На этом уроке все желающие смогут изучить тему «Прямоугольный параллелепипед». В начале урока мы повторим, что такое произвольный и прямой параллелепипеды, вспомним свойства их противоположных граней и диагоналей параллелепипеда. Затем рассмотрим, что такое прямоугольный параллелепипед, и обсудим его основные свойства.

Тема: Перпендикулярность прямых и плоскостей

Урок: Прямоугольный параллелепипед

Поверхность, составленная из двух равных параллелограммов АВСD и А 1 В 1 С 1 D 1 и четырех параллелограммов АВВ 1 А 1 , ВСС 1 В 1 , СDD 1 С 1 , DАА 1 D 1 , называется параллелепипедом (рис. 1).

Рис. 1 Параллелепипед

То есть: имеем два равных параллелограмма АВСD и А 1 В 1 С 1 D 1 (основания), они лежат в параллельных плоскостях так, что боковые ребра АА 1 , ВВ 1 , DD 1 , СС 1 параллельны. Таким образом, составленная из параллелограммов поверхность называется параллелепипедом .

Таким образом, поверхность параллелепипеда - это сумма всех параллелограммов, из которых составлен параллелепипед.

1. Противоположные грани параллелепипеда параллельны и равны.

(фигуры равны, то есть их можно совместить наложением)

Например:

АВСD = А 1 В 1 С 1 D 1 (равные параллелограммы по определению),

АА 1 В 1 В = DD 1 С 1 С (так как АА 1 В 1 В и DD 1 С 1 С - противоположные грани параллелепипеда),

АА 1 D 1 D = ВВ 1 С 1 С (так как АА 1 D 1 D и ВВ 1 С 1 С - противоположные грани параллелепипеда).

2. Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Диагонали параллелепипеда АС 1 , В 1 D, А 1 С, D 1 В пересекаются в одной точке О, и каждая диагональ делится этой точкой пополам (рис. 2).

Рис. 2 Диагонали параллелепипеда пересекаются и деляться точкой пересечения пополам.

3. Имеются три четверки равных и параллельных ребер параллелепипеда : 1 - АВ, А 1 В 1 , D 1 C 1 , DC, 2 - AD, A 1 D 1 , B 1 C 1 , BC, 3 - АА 1 , ВВ 1 , СС 1 , DD 1 .

Определение. Параллелепипед называется прямым, если его боковые ребра перпендикулярны основаниям.

Пусть боковое ребро АА 1 перпендикулярно основанию (рис. 3). Это означает, что прямая АА 1 перпендикулярна прямым АD и АВ, которые лежат в плоскости основания. А, значит, в боковых гранях лежат прямоугольники. А в основаниях лежат произвольные параллелограммы. Обозначим, ∠BAD = φ, угол φ может быть любым.

Рис. 3 Прямой параллелепипед

Итак, прямой параллелепипед - это параллелепипед, в котором боковые ребра перпендикулярны основаниям параллелепипеда.

Определение. Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию. Основания являются прямоугольниками.

Параллелепипед АВСDА 1 В 1 С 1 D 1 - прямоугольный (рис. 4), если:

1. АА 1 ⊥ АВСD (боковое ребро перпендикулярно плоскости основания, то есть параллелепипед прямой).

2. ∠ВАD = 90°, т. е. в основании лежит прямоугольник.

Рис. 4 Прямоугольный параллелепипед

Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда. Но есть дополнительные свойства, которые выводятся из определения прямоугольного параллелепипеда.

Итак, прямоугольный параллелепипед - это параллелепипед, у которого боковые ребра перпендикулярны основанию. Основание прямоугольного параллелепипеда - прямоугольник .

1. В прямоугольном параллелепипеде все шесть граней прямоугольники.

АВСD и А 1 В 1 С 1 D 1 - прямоугольники по определению.

2. Боковые ребра перпендикулярны основанию . Значит, все боковые грани прямоугольного параллелепипеда - прямоугольники.

3. Все двугранные углы прямоугольного параллелепипеда прямые.

Рассмотрим, например, двугранный угол прямоугольного параллелепипеда с ребром АВ, т. е. двугранный угол между плоскостями АВВ 1 и АВС.

АВ - ребро, точка А 1 лежит в одной плоскости - в плоскости АВВ 1 , а точка D в другой - в плоскости А 1 В 1 С 1 D 1 . Тогда рассматриваемый двугранный угол можно еще обозначить следующим образом: ∠А 1 АВD.

Возьмем точку А на ребре АВ. АА 1 - перпендикуляр к ребру АВ в плоскости АВВ- 1 , AD перпендикуляр к ребру АВ в плоскости АВС. Значит, ∠А 1 АD - линейный угол данного двугранного угла. ∠А 1 АD = 90°, значит, двугранный угол при ребре АВ равен 90°.

∠(АВВ 1 , АВС) = ∠(АВ) = ∠А 1 АВD= ∠А 1 АD = 90°.

Аналогично доказывается, что любые двугранные углы прямоугольного параллелепипеда прямые.

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Примечание. Длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда, являются измерениями прямоугольного параллелепипеда. Их иногда называют длина, ширина, высота.

Дано: АВСDА 1 В 1 С 1 D 1 - прямоугольный параллелепипед (рис. 5).

Доказать: .

Рис. 5 Прямоугольный параллелепипед

Доказательство:

Прямая СС 1 перпендикулярна плоскости АВС, а значит, и прямой АС. Значит, треугольник СС 1 А - прямоугольный. По теореме Пифагора:

Рассмотрим прямоугольный треугольник АВС. По теореме Пифагора:

Но ВС и AD - противоположные стороны прямоугольника. Значит, ВС = AD. Тогда:

Так как , а , то. Поскольку СС 1 = АА 1 , то что и требовалось доказать.

Диагонали прямоугольного параллелепипеда равны.

Обозначим измерения параллелепипеда АВС как a, b, c (см. рис. 6), тогда АС 1 = СА 1 = В 1 D = DВ 1 =

Загрузка...