Медицинский портал. Щитовидная железа, Рак, диагностика

УЗИ глаза: как делается, что показывает. Ультразвуковое исследование УЗИ при объемных внутриглазных образованиях

Ультразвуковое исследование (УЗИ) завершает офтальмологическое обследование пациента потому, что оно контактное. А любое микроповреждение роговицы может исказить показания авторефрактометрии или аберрометрии.

А-сканирование (ультразвуковая биометрия) определяет размер передней камеры глаза, толщину хрусталика и переднезадний отрезок (ПЗО – переднезадний размер глаза) с точностью до сотых долей миллиметра. При близорукости глаз увеличивается, что и фиксируется аппаратом. ПЗО применяется еще при выявлении степени прогрессирования близорукости. ПЗО в норме 24 мм (рис. 15).

Рис. 15. Размеры глазного яблока. Длина переднезаднего отрезка нормального глазного яблока практически совпадает с диаметром монеты номиналом пять рублей

В-сканирование – обычное двухмерное УЗИ глаза. Можно диагностировать отслойку сетчатки (необходима срочная операция, лазерная коррекция в лучшем случае надолго откладывается), деструкцию стекловидного тела, внутриглазные опухоли и др.

Пахиметрия. Измерение толщины роговицы. Тот самый показатель, который чаще всего поставляет противопоказания к лазерной коррекции. Если роговица слишком тонкая, то коррекция часто невозможна. Нормальная толщина роговицы в центре 500–550 микрометров (~0,5 мм). Сейчас существуют не только ультразвуковые, но и оптические пахиметры, измеряющие толщину роговицы не прикасаясь к ней.

Заключение

Все вышеперечисленное – только основные этапы офтальмологического обследования. Может быть гораздо больше исследований и аппаратов, особенно если у вас найдут какие-либо заболевания глаз. Есть необязательные, но желательные обследования, о которых я здесь решил не упоминать (такие, как определение ведущего глаза, девиации и т. д.).

После окончания офтальмологического обследования врач ставит диагноз и отвечает на ваши вопросы, главный из которых: «Можно мне делать лазерную коррекцию?» Крайне редко возникают ситуации, в которых делать лазерную коррекцию необходимо по медицинским показаниям (например при большой разнице в «плюсах» или «минусах» между глазами).

Особенности заполнения консультационного заключения

После проведения обследования пациенту на руки выдают консультационное заключение, в котором отражены основные результаты, диагноз и рекомендации. Иногда совсем коротко, иногда внушительный труд на нескольких листах, включая различные распечатки и фотографии. Кому как повезет. Объем тут ни о чем не говорит. Однако почерпнуть немного полезной информации из него можно. Приведу пример.

Консультационное заключение № ....

Иванов Иван Иванович. Дата рождения 01.01.1980.

Обследован в клинике «Z» 01.01.2008.

Предъявляет жалобы на плохое зрение вдаль с 12 лет. Последние пять лет прогрессирования близорукости не отмечает, что подтверждается данными из амбулаторной карты. Профилактическая лазеркоагуляция сетчатки проведена на оба глаза в 2007 году. Носит мягкие контактные линзы ежедневно в течение последних 3 лет. Снял их последний раз 7 дней назад. Гепатит, туберкулез, другие инфекционные и общие соматические заболевания, аллергию на медикаменты отрицает.

На узкий зрачок:

OD sph –8,17 cyl –0,53 ax 178°

OS sph –8,47 cyl –0,58 ax 172°

В условиях циклоплегии (на широкий зрачок):

OD sph –7,63 cyl –0,45 ax 177°

OS sph –8,13 cyl –0,44 ax 174°

Острота зрения.

Ультразвуковая и оптическая биометрия глаза - распространенная процедура в офтальмологии, которая позволяет вычислить анатомические характеристики глаза без хирургического вмешательства. Процедура используется для диагностики ряда болезней от обычной миопии (близорукости) до катаракты и послеоперационной диагностики и часто помогает спасти зрение.

В зависимости от типа волн, которыми проводят измерения, биометрия делится на ультразвуковую и оптическую.

Для чего нужна биометрия?

  • Подбор индивидуальных контактных линз.
  • Контроль над прогрессирующей миопией.
  • Диагностика:
    • кератоконуса (истончение и деформация роговицы);
    • послеоперационной кератэктазии;
    • роговицы после пересадки.

Поскольку миопия особенно быстро прогрессирует у детей независимо от средств коррекции, биометрическое исследование глаза позволяет вовремя определить любые отклонения от нормы и изменить лечение. Показаниями к биометрии являются:


Назначается процедура пациентам, у которых проявляются такие патологии, как помутнение роговицы.
  • быстрое ухудшение зрения;
  • помутнение и деформация роговицы;
  • двоение, искривление изображения;
  • тяжесть при смыкании век;
  • головные боли и быстрая утомляемость глаз.

Виды биометрии и ее проведение

Ультразвуковая диагностика

Для расчета анатомических параметров с помощью ультразвука нужен непосредственный контакт зонда с кожей век. Пациент при этом должен лежать неподвижно, чтобы волны проходили должным образом, а картинка был четкой. Для улучшения проводимости на веки наносится гель. Ультразвуковая биометрия - более старый способ диагностики. Преимущество техники - мобильность аппаратуры, что особенно важно для пациентов, неспособных двигаться.

Оптическая техника

Методика существенно отличается, так как в ней используют принцип интерферометрии, то есть измерение проводится за счет разделенных пучков электромагнитного излучения. Она не требует контакта с глазом пациента, к тому же считается более точным способом диагностики, чем ультразвуковая. Некоторые устройства используют лазерные инфракрасные лучи длиной волн в 780 нм. Расслоение излучения между светом, отраженным в слезной пленке, и пигментным эпителием на сетчатке улавливаются чувствительным сканером.

Оптический метод биометрии не требует усилий или дополнительной осторожности со стороны врача. После выравнивания аппаратуры по глазу дальнейшие измерения проводятся автоматически.


Оптическая биометрия глаза – бесконтактный способ диагностики, который исключает человеческий фактор.

Оптический метод считается более прогрессивным и простым, чем ультразвуковая биометрика, за счет исключения человеческого фактора. Техника более комфортна, так как пациент не терпит неудобства из-за контакта глаза с аппаратом. На некоторых устройствах ультразвуковая биометрия комбинируется с оптической для достижения более точных измерений вне зависимости от диагноза.

Расшифровка показателей

После сканирования врач получает такие данные:

  • величина длины глаза и передне-задней оси;
  • радиус кривизны передней поверхности роговицы (кератометрия);
  • глубина передней камеры;
  • диаметр роговицы;
  • расчет оптической силы интраокулярной линзы (ИОЛ);
  • толщина роговицы (пахиметрия), хрусталика и сетчатки;
  • расстояние между лимбами;
  • изменения оптической оси;
  • величина зрачка (пупилометрия).

Особенно важны измерения толщины роговицы и радиуса ее кревизны, так как они позволяют диагностировать кератоконус и кератоглобус - изменения в роговице, из-за которых она становится конусообразной или шарообразной. Биометрия позволяет вычислить, насколько отличается толщина при этих заболеваниях от центра к периферии и назначить правильную коррекцию.

Проведение процедуры дает точные показатели состояния органов зрения и помогает выявить патологии, например, такие как близорукость.

У здорового человека толщина роговицы должна колебаться от 410 до 625 мкм, при этом снизу она толще, чем сверху. Изменения толщины могут говорить о заболеваниях эндотелия роговицы или о других генетических патологиях глаза. Обычно глубина передней камеры при кератоглобусе увеличивается на несколько миллиметров, но расшифровка данных с современных аппаратов дает точность до 2 микрометров. При миопии биометрия диагностирует удлинение сагиттальной оси разной степени.

5
1 УНИИФ - филиал ФГБУ НМИЦ ФПИ Минздрава России, Екатеринбург
2 ООО «Клиника «Сфера», Москва, Россия
3 ООО «Клиника «Сфера» , Москва, Россия
4 ООО «Клиника лазерной медицины «Сфера» профессора Эскиной», Москва; ФГБУ «Национальный медико-хирургический центр им. Н.И. Пирогова» МЗ РФ, Москва
5 ГБОУ ВПО «РНИМУ им. Н.И. Пирогова» Минздрава России, Москва; ГБУЗ «ГКБ № 15 им. О.М. Филатова» ДЗМ

Цель: оценить морфофункциональные параметры зрительного анализатора у пациентов с близорукостью по мере увеличения длины переднезадней оси (ПЗО) глаза.

Материалы и методы: в исследовании приняли участие 36 пациентов (71 глаз). Все пациенты в ходе исследования были поделены на 4 группы по величине переднезадней оси глазного яблока. Первую группу составили пациенты с миопией слабой степени и величиной ПЗО от 23,81 до 25,0 мм; вторую – пациенты с миопией средней степени и величиной ПЗО от 25,01 до 26,5 мм; третью – пациенты с миопией высокой степени, величина ПЗО выше 26,51 мм; четвертую – пациенты с рефракцией приближенной к эмметропической и величиной ПЗО от 22,2 до 23,8 мм. Помимо стандартного офтальмологического обследования, пациентам проводился следующий диагностический комплекс мероприятий: эхобиометрия, определение оптической плотности макулярного пигмента (ОПМП), цифровое фотографирование глазного дна, оптическая когерентная томография переднего и заднего отрезков глазного яблока.

Результаты: средний возраст пациентов составил 47,3±13,9 лет. При статистической обработке полученных результатов исследуемых показателей отмечается снижение некоторых из них по мере увеличения ПЗО: максимально-коррегированной остроты зрения (p=0,01), чувствительности в фовеа (p=0,008), средней толщины сетчатки в фовеа (p=0,01), средней толщины хориоидеи в назальном и темпоральном секторах (p=0,005; p=0,03). Кроме того, во всех группах испытуемых выявлена значимая статистически достоверная обратная корреляционная взаимосвязь, между ПЗО и (МКОЗ) -0,4; а также толщиной сетчатки в фовеа -0,6; толщиной хориоидеи в фовеа -0,5 и чувствительностью в фовеа -0,6; (p<0,05).

Заключение: при детальном анализе полученных средних значений исследуемых параметров обнаружена тенденция к общему снижению морфофункциональных показателей глазного яблока по мере увеличения ПЗО в группах. В то время как, полученные корреляционные данные проведенного клинического испытания свидетельствуют о тесной взаимосвязи между морфометрическими и функциональными параметрами зрительного анализатора.

Ключевые слова: миопия, эмметропия, оптическая плотность макулярного пигмента, перезнезадняя ось глаза, морфометрические параметры, каротиноиды, гетерохроматическая фликкер-фотометрия, оптическая когерентная томография сетчатки.

Для цитирования: Егоров Е.А., Эскина Э.Н., Гветадзе А.А., Белогурова А.В., Степанова М.А., Рабаданова М.Г. Морфометрические особенности глазного яблока у пациентов с близорукостью и их влияние на зрительные функции. // РМЖ. Клиническая офтальмология. 2015. № 4. С. 186–190.

Для цитирования: Егоров Е.А., Эскина Э.Н., Гветадзе А.А., Белогурова А.В., Степанова М.А., Рабаданова М.Г. Морфометрические особенности глазного яблока у пациентов с близорукостью и их влияние на зрительные функции // РМЖ. Клиническая офтальмология. 2015. №4. С. 186-190

Myopic eyes: morphometric features and their influence on visual function.
Egorov E.A.1, Eskina E.N.3,4,5,
Gvetadze A.A.1,2, Belogurova A.V.3,5,
Stepanova M.A.3,5, Rabadanova M.G.1,2

1 Pirogov Russian State National Medical University, 117997, Ostrovityanova st., 1, Moscow, Russian Federation;
2 Municipal Clinical Hospital № 15 named after O.M. Filatov, 111539, Veshnyakovskaya st., 23, Moscow, Russian Federation;
3 National medical surgical Center named after N.I. Pirogov, 105203, Nizhnyaya Pervomayskaya st., 70, Moscow, Russian Federation;
4 Federal Biomedical Agency of Russia, 125371, Volokolamskoe shosse, 91, Moscow, Russian Federation;
5 Laser surgery clinic «Sphere», 117628, Starokachalovskaya st., 10, Moscow, Russian Federation;

Purpose: to evaluate morphofunctional parameters of myopic eyes with increase of the length of eye anteroposterior axis (APA).

Methods: the study involved 36 patients (71 eyes). All patients were divided into 4 groups depending on the APA length. 1st group involved patients with mild myopia and APA length from 23,81 to 25.0 mm; the 2nd –with moderate myopia and APA length from 25,01 to 26.5 mm; 3d - with high myopia and APA length above 26,51 mm; 4th – with emmetropic refraction and APA length from 22.2 to 23.8 mm. Patients underwent standard ophthalmic examination and additional diagnostic examination: echobiometry, determination of optical density of macular pigment, fundus photography, optical coherence tomography of the anterior and posterior segments of the eye.

Results: The mean age was 47.3±13,9 years. Statistic analysis showed the reduction of some parameters with APA length"s increasing: best corrected visual acuity (BCVA) (p=0,01), foveal sensitivity (p=0,008), average foveal retinal thickness (p=0,01), average thickness in the temporal and nasal choroids sectors (p=0,005; p=0,03). Inverse correlation between axial length and BCVA (r=-0,4); the foveal retinal thickness (r=-0,6); th­­e foveal choroidal thickness (r= -0,5) and foveal sensitivity(r= -0,6) were revealed in all groups (p<0,05).

Conclusion: the analysis showed the tendency of a general decrease of morphological and functional parameters of the eye with the increase of axial length in all groups. Revealed correlation showed a close relationship between morphometric and functional parameters of the eye.

Key words: myopia, emmetropia, macular pigment optical density, eye anteroposterior axis, morphofunctional parameters, carotenoids, heterochromatic flicker photometry, optical coherence tomography of the retina.

For citation: Egorov E.A., Eskina E.N., Gvetadze A.A., Belogurova A.V.,
Stepanova M.A., Rabadanova M.G. Myopic eyes: morphometric features and
their influence on visual function // RMJ. Clinical ophthalomology.
2015. № 4. P. 186–190.

В статье приведены данные о морфометрических особенностях глазного яблока у пациентов с близорукостью и их влияние на зрительные функции

В структуре заболеваемости органа зрения частота миопии в различных регионах Российской Федерации колеблется от 20 до 60,7%. Известно, что среди инвалидов по зрению 22% составляют лица молодого возраста, основной причиной инвалидности у которых является осложненная близорукость высокой степени .
Как в нашей стране, так и за рубежом у подростков и «молодых взрослых» миопия высокой степени часто сочетается с патологией сетчатки и зрительного нерва, затрудняя тем самым прогнозирование и течение патологического процесса . Медико-социальная значимость проблемы усугубляется тем, что осложненная миопия поражает людей в самом работоспособном возрасте. Прогрессирование близорукости может приводить к серьезным необратимым изменениям в глазу и значительной потере зрения . По итогам Всероссийской диспансеризации, заболеваемость детей и подростков миопией за последние 10 лет выросла в 1,5 раза. Среди взрослых инвалидов по зрению вследствие миопии 56% имеют врожденную миопию, остальные – приобретенную, в т. ч. в школьные годы .
Результаты комплексных эпидемиологических и клинико-генетических исследований показали, что близорукость является мультифакториальным заболеванием. Понимание патогенетических механизмов нарушения зрительных функций при миопии остается одним из актуальных вопросов офтальмологии. Звенья патогенеза при миопической болезни сложно взаимодействуют между собой . Важную роль в течении близорукости играют морфологические свойства склеры. Именно им придается особо важное значение в патогенезе удлинения глазного яблока. В склере близоруких людей происходят дистрофические и структурные изменения . Установлено, что растяжимость и деформация склеры глаза взрослых людей с высокой миопией заметно больше, чем при эмметропии, особенно в области заднего полюса . Увеличение длины глаза при миопии в настоящее время рассматривается как следствие метаболических нарушений в склере, а также изменений регионарной гемодинамики . Упруго-эластические свойства склеры и изменения длины переднезадней оси (ПЗО) давно интересовали ученых. Эволюция изучения анатомических параметров глазного яблока отражена в работах многих авторов.
По данным Е.Ж. Трона, длина оси эмметропического глаза варьирует от 22,42 до 27,30 мм. В отношении вариабельности длины ПЗО при миопии от 0,5 до 22,0D Е.Ж. Трон приводит такие данные: длина оси при миопии 0,5–6,0D – от 22,19 до 28,11 мм; при миопии 6,0–22,0D – от 28,11 до 38,18 мм. По мнению Т.И. Ерошевского и А.А. Бочкаревой, биометрические показатели сагиттальной оси нормального глазного яблока в среднем равны 24,00 мм . По данным Э.С. Аветисова, при эмметропии длина ПЗО глаза составляет 23,68±0,910 мм, при близорукости 0,5–3,0D – 24,77±0,851 мм; при миопии 3,5–6,0D – 26,27±0,725 мм; при миопии 6,5–10,0D – 28,55±0,854 мм . Довольно четкие параметры эмметропических глаз приведены в Национальном руководстве по офтальмологии: длина ПЗО эмметропического глаза в среднем составляет 23,92±1,62 мм . В 2007 г. И.А. Ремесниковым создана новая анатомо-оптическая и соответствующая ей редуцированная оптическая схема эмметропического глаза с клинической рефракцией 0,0D и ПЗО 23,1 мм .
Как уже упоминалось выше, при миопии имеют место дистрофические изменения сетчатки, что, скорее всего, вызвано нарушением кровотока в хориоидальных и перипапиллярных артериях, а также ее механическим растяжением . Доказано, что у людей с осевой близорукостью высокой степени средняя толщина сетчатки и хориоидеи в субфовеа меньше, чем у эмметропов . Значит, можно предположить, что чем больше длина ПЗО, тем выше «перерастяжение» оболочек глазного яблока и ниже плотность тканей: склеры, хориоидеи, сетчатки. В результате этих изменений снижается и количество клеток ткани и клеточных веществ: например, истончается слой ретинального пигментного эпителия, уменьшается концентрация активных соединений, возможно, каротиноидов в макулярной области.

Известно, что суммарная концентрация каротиноидов: лютеина, зеаксантина и мезозеаксантина в центральной области сетчатки составляет оптическую плотность макулярного пигмента (ОПМП). Макулярные пигменты (МП) абсорбируют синюю часть спектра и обеспечивают мощную антиоксидантную защиту от свободных радикалов, перекисного окисления липидов . По данным ряда авторов, уменьшение показателя ОПМП сопряжено с риском развития макулопатий и снижением центрального зрения.
Кроме того, многие авторы сходятся во мнении, что с возрастом происходит снижение ОПМП . Исследования уровня ОПМП в здоровой популяции у разновозрастных пациентов и пациентов всевозможных этнических групп во многих странах мира составляют весьма противоречивую картину. Так, например, среднее значение ОПМП в китайской популяции у здоровых добровольцев в возрасте от 3 до 81 года составило 0,303±0,097. Кроме того, была выявлена обратная корреляционная связь с возрастом . Среднее значение ОПМП у здоровых добровольцев в Австралии в возрасте от 21 до 84 лет составило 0,41±0,20 . Для населения Великобритании в возрасте от 11 до 87 лет общее среднее значение ОПМП в группе составило 0,40±0,165. Отмечена связь с возрастом и цветом радужки .
К сожалению, в Российской Федерации масштабных исследований по изучению показателя ОПМП в здоровой популяции, у пациентов с аномалиями рефракции, патологическими изменениями макулярной зоны и другими офтальмологическими заболеваниями не проводилось. Этот вопрос до сих пор открыт и весьма интересен. Единственное исследование ОПМП в здоровой российской популяции было проведено в 2013 г. Э.Н. Эскиной и соавт. В этом исследовании приняли участие 75 здоровых добровольцев в возрасте от 20 до 66 лет. Средний показатель ОПМП в разновозрастных группах варьировал от 0,30 до 0,33, а коэффициент корреляции Пирсона свидетельствовал об отсутствии связи между величиной ОПМП и возрастом при нормально протекающих возрастных процессах в органе зрения .
Вместе с тем результат проведенного зарубежными авторами клинического исследования подтверждает, что у здоровых добровольцев значения ОПМП положительно коррелируют с показателями центральной толщины сетчатки (r=0,30), измеренными при помощи гетерохроматической фликкер-фотометрии и оптической когерентной томографии (ОКТ) соответственно .
Поэтому особый интерес, на наш взгляд, представляет изучение ОПМП не только в здоровой популяции у разновозрастных пациентов и пациентов всевозможных этнических групп, но и при дистрофических офтальмопатиях и аномалиях рефракции, в частности при миопии. Кроме того, любопытным остается и факт влияния увеличения длины ПЗО на топографо-анатомические и функциональные показатели зрительного анализатора (в частности, на ОПМП, толщину сетчатки, хориоидеи и др.). Актуальность вышеуказанных фундаментальных вопросов определила цель и задачи настоящего исследования.
Цель исследования: оценить морфофункциональные параметры зрительного анализатора у пациентов с близорукостью по мере увеличения длины ПЗО глаза.

Материалы и методы
Всего обследовано 36 пациентов (72 глаза). Все пациенты в ходе исследования были поделены на группы исключительно по величине ПЗО глазного яблока (по классификации Э.С. Аветисова) . 1-ю группу составили пациенты с миопией слабой степени и величиной ПЗО от 23,81 до 25,0 мм; 2-ю – с миопией средней степени и величиной ПЗО от 25,01 до 26,5 мм; 3-ю – с миопией высокой степени и величиной ПЗО выше 26,51 мм; 4-ю – пациенты с рефракцией, приближенной к эмметропической, и величиной ПЗО от 22,2 до 23,8 мм (табл. 1).
Пациенты не принимали препараты, содержащие каротиноиды, не придерживались специальной диеты, обогащенной лютеином и зеаксантином. Всем испытуемым проводилось стандартное офтальмологическое обследование, позволившее исключить у них макулярную патологию, предположительно влияющую на результаты проводимого обследования.
Обследование включало следующий диагностический комплекс мероприятий: авторефрактометрию, визометрию с определением максимально-корригированной остроты зрения (МКОЗ), бесконтактную компьютерную пневмотонометрию, биомикроскопию переднего отрезка с помощью щелевой лампы, статическую автоматическую периметрию с коррекцией аметропии (оценивали показатели MD, PSD, а также чувствительность в фовеа), непрямую офтальмоскопию макулярной области и диска зрительного нерва с помощью линзы 78 диоптрий. Кроме того, всем пациентам были проведены эхобиометрия на аппарате фирмы Quantel Medical (Франция), определение ОПМП на приборе Mpod MPS 1000, Tinsley Precision Instruments Ltd., Croydon, Essex (Великобритания), цифровое фотографирование глазного дна с помощью фундус-камеры Carl Zeiss Medical Technology (Германия); ОКТ переднего отрезка глазного яблока на аппарате OCT-VISANTE Carl Zeiss Medical Technology (Германия) (по данным исследования ОСТ-VISANTЕ, оценивали центральную толщину роговицы); ОКТ сетчатки на аппарате Cirrus HD 1000 Carl Zeiss Medical Technology (Германия). По данным ОКТ, оценивали среднюю толщину сетчатки в области фовеа, рассчитанную прибором в автоматическом режиме, с помощью протокола Macular Cube 512х128, а также среднюю толщину хориоидеи, которую рассчитывали вручную от гиперрефлективной границы, соответствующей РПЭ, до границы хориоидо-склерального интерфейса, отчетливо видимой на горизонтальном 9-миллиметровом скане, сформированном через центр фовеа при использовании протокола «High Definition Images: HD Line Raster». Измерение толщины хориоидеи проводили в центре фовеа, а также в 3 мм в назальном и темпоральном направлениях от центра фовеа, в одинаковое время суток с 9:00 до 12:00 .
Статистическая обработка данных клинического исследования выполнялась по стандартным статистическим алгоритмам с применением программного обеспечения Statistica, версия 7.0. Достоверностью считалась разница величин при p<0,05 (уровень значимости 95%). Определяли средние значения, стандартное отклонение, а также проводили корреляционный анализ, рассчитывая коэффициент ранговой корреляции Spearman. Проверка гипотез при определении уровня статистической значимости при сравнении 4 несвязанных групп осуществлялась с использованием Kruskal-Wallis ANOVA теста.

Результаты
Средний возраст пациентов составил 47,3±13,9 года. Распределение по полу было следующим: 10 мужчин (28%), 26 женщин (72%).
Средние значения исследуемых параметров представлены в таблицах 2, 3 и 4.
При проведении корреляционного анализа выявлена статистически достоверная обратная связь между ПЗО и некоторыми параметрами (табл. 5).
Особый интерес, на наш взгляд, представляют данные корреляционного исследования в группе пациентов с диагнозом «миопия высокой степени». Результаты анализа представлены в таблице 6.

Заключение
При детальном рассмотрении полученных средних значений исследуемых параметров выявляется тенденция к общему снижению функциональных показателей глаза по мере увеличения ПЗО в группах, в то время как полученные данные корреляционного анализа свидетельствуют о тесной взаимосвязи между морфометрическими и функциональными параметрами зрительного анализатора. Предположительно эти изменения также связаны с «механическим перерастяжением» оболочек у пациентов с близорукостью в связи с увеличением ПЗО.
Отдельно все-таки хотелось бы отметить хоть и недостоверное, но снижение ОПМП в группах, и небольшую тенденцию к отрицательной обратной связи между ОПМП и ПЗО. Возможно, по мере увеличения числа группы испытуемых будет отмечаться более сильная и достоверная корреляционная связь между этими показателями.

Литература

1. Аветисов Э.С. Близорукость. М.: Медицина, 1999. С. 59. .
2. Акопян А.И. и др. Особенности диска зрительного нерва при глаукоме и миопии // Глаукома. 2005. № 4. С. 57–62. .
3. Даль Н.Ю. Макулярные каротиноиды. Могут ли они защитить нас от возрастной макулярной дегенерации? // Офтальмологические ведомости. 2008. № 3. С. 51–53. .
4. Ерошевский Т.И., Бочкарева А.А. Глазные болезни. М.: Медицина, 1989. С. 414. .
5. Зыкова А.В., Рзаев В.М., Эскина Э.Н. Исследование оптической плотности макулярного пигмента у разновозрастных пациентов в норме: Мат-лы VI Росс. общенац. офтальмол. форума. Сборник научных трудов. М., 2013. Т. 2. С. 685–688. .
6. Кузнецова М.В. Причины развития близорукости и ее лечение. М.: МЕДпресс-информ, 2005. С. 176. .
7. Либман E.C., Шахова E.B. Слепота и инвалидность вследствие патологии органа зрения в России // Вестник офтальмологии. 2006. № 1. С. 35–37. .
8. Офтальмология. Национальное руководство / под ред. С.Э. Аветисова, Е.А. Егорова, Л.К. Мошетовой, В.В. Нероева, Х.П. Тахчиди. М.: ГЭОТАР-Медиа, 2008. С. 944. .
9. Ремесников И.А. Закономерности соотношения сагиттальных размеров анатомических структур глаза в норме и при первичной закрытоугольной глаукоме с относительным зрачковым блоком: Автореф. дис. … канд. мед. наук. Волгоград, 2007. С. 2. .
10. Слувко Е.Л. Миопия. Нарушение рефракции – это болезнь // Астраханский вестник экологического образования. 2014. № 2 (28). С. 160–165. .
11. Эскина Э.Н., Зыкова А.В. Ранние критерии риска развития глаукомы у пациентов с близорукостью // Офтальмология. 2014. Т. 11. № 2. С. 59–63. .
12. Abell R.G., Hewitt A.W., Andric M., Allen P.L., Verma N. The use of heterochromatic flicker photometry to determine macular pigment optical density in a healthy Australian population // Graefes Arch Clin Exp Ophthalmol. 2014. Vol. 252 (3). P. 417–421.
13. Beatty S., Koh H.H., Phil M., Henson D., Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration // Surv. Ophthalmol. 2000. Vol. 45. P. 115–134.
14. Bone R.A., Landrum J.T. Macular Pigment in Henle Fiber Membranes a Model for Haidinger"s Brushes // Vision Res. 1984. Vol. 24. P. 103–108.
15. Bressler N.M., Bressler S.B., Childs A.L. Surgery for hemorrhagic choroidal neovascular lesions of age-related macular degeneration // Ophthalmology. 2004. Vol. 111. P. 1993–2006.
16. Gupta P., Saw S., Cheung C.Y., Girard M.J., Mari J.M., Bhargava M., Tan C., Tan M., Yang A., Tey F., Nah G., Zhao P., Wong T.Y., Cheng C. Choroidal thickness and high myopia: a case-control study of young Chinese men in Singapore // Acta Ophthalmologica. 2014. DOI: 10.1111/aos.12631.
17. Liew S.H., Gilbert C.E., Spector T.D., Mellerio J., Van Kuijk F.J., Beatty S., Fitzke F., Marshall J., Hammond C.J. Central retinal thickness is positively correlated with macular pigment optical density // Exp Eye Res. 2006. Vol. 82 (5). P. 915.
18. Maul E.A., Friedman D.S., Chang D.S., Bjland M.V., Ramulu P.Y., Jampel H.D., Quigley H.A. Choroidal thickness measured by spectral domain optical coherence tomography: factors affecting thickness in glaucoma patients // Ophthalmol. 2011. Vol. 118. (8). P. 1571–1579.
19. Murray I.J., Hassanali B., Carden D. Macular pigment in ophthalmic practice // Graefes Arch. Clin. Exp. Ophthalmol. 2013. Vol. 251 (10). P. 2355–2362.
20. Rada J.A et al. The sclera and myopia // Exp. Eye Res. 2006. Vol. 82. № 2. P. 185–200.
21. Zhang X., Wu K., Su Y., Zuo C., Chen H., Li M., Wen F. Macular pigment optical density in a healthy Chinese population // Acta Ophthalmol. 2015. DOI: 10.1111/aos.12645.


Функция органов зрения – это важная составляющая сенсорных систем человека. Снижение остроты зрения существенно влияет на качество жизни, потому следует уделять особое внимание при появлении симптомов либо подозрений на какие-либо патологические процессы.

Первым делом стоит обратиться за консультацией к врачу-офтальмологу. После осмотра специалист может назначить перечень дополнительных методов обследования для уточнения данных и постановки диагноза. Одним из таких методов является УЗИ глаза.

Ультразвуковое исследование глаза (эхография) – это манипуляция, которая базируется на проникновении и отражении высокочастотных волн от различных тканей организма с последующим улавливанием сигналов датчиком аппарата. Процедура приобрела свою популярность благодаря тому, что обладает высокой информативностью, безопасностью и безболезненностью.

К тому же метод не требует больших затрат времени и особой предварительной подготовки. УЗИ дает возможность изучить особенности строения глазных мышц, сетчатки, кристаллика, общего состояния глазного дна и тканей глаза. Часто процедуру назначают до и после оперативных вмешательств, а также для постановки окончательного диагноза и наблюдения за динамикой течения заболевания.

Показания для проведения УЗИ глазного дна, орбиты и глазницы

Перечень показаний:

  • миопия (близорукость) и гиперметропия (дальнозоркость) различной степени тяжести;
  • катаракта;
  • глаукома;
  • отслойка сетчатки;
  • травмы различного происхождения и тяжести;
  • патологии глазного дна и сетчатки;
  • доброкачественные и злокачественные новообразования;
  • заболевания, связанные с патологией глазных мышц, сосудов и нервов, в частности со зрительным нервом;
  • наличие в анамнезе гипертонической болезни, сахарного диабета, нефропатии и прочее.

Кроме вышеперечисленного, УЗИ глаза ребенку проводят еще и при врожденных аномалиях развития глазниц и глазных яблок. Так как метод обладает множеством положительных качеств, рисков для здоровья ребенка нет.

Ультразвуковая диагностика незаменима в случае непрозрачности (помутнения) глазных сред, так как в данной ситуации становится невозможным изучение глазного дна другими методами диагностики. В таком случае врач может провести УЗИ глазного дна и оценить состояние структур.

Стоит отметить, что УЗИ глазного яблока не имеет никаких противопоказаний. Эту диагностическую манипуляцию можно проводить абсолютно всем людям, в том числе беременным женщинам и детям. В офтальмологической практике для изучения структур глаза УЗИ является просто необходимой процедурой. Но есть некоторые ситуации, в которых рекомендуют воздержаться от данного вида обследования.

Трудности могут возникнуть только в случае некоторых видов травматических поражений глаза (открытые раны глазного яблока и век, кровотечения), при которых исследование становится просто невозможным.

Как делается УЗИ глаза

Пациент по направлению офтальмолога направляется на манипуляцию. Предварительной подготовки проходить не нужно. Пациенткам рекомендуется перед УЗИ снять макияж с области глаз, так как датчик будет устанавливаться на верхнее веко. Существует несколько видов проведения ультразвукового исследования глазного яблока в зависимости от данных, которые необходимо уточнить.

Ультразвуковая диагностика базируется на эхолокации, выполняется в нескольких специальных режимах. Первый используют для измерения размеров орбиты, глубины передней камеры, толщины хрусталика, длины оптической оси. Второй режим необходим для визуализации структур глазного яблока. Часто совместно с ультразвуковой эхографией проводят еще и доплерографию — ультразвуковое исследование сосудов глаза.

Во время манипуляции пациент занимает положение сидя или лежа на кушетке с закрытыми глазами. Затем врач наносит специальный гипоаллергенный гель для ультразвуковой диагностики на верхнее веко и устанавливает датчик аппарата. Для того чтоб лучше детализировать разные структуры глазного яблока и глазницы, врач может попросить пациента сделать некоторые функциональные пробы — движения глазами в разные стороны во время исследования.

УЗИ глазного яблока занимает около 20–30 минут. После проведения самого обследования и фиксации результатов сонолог заполняет специальный протокол исследования и выдает заключение пациенту. Необходимо подчеркнуть, что расшифровкой данных ультразвуковой диагностики может заниматься только врач-специалист соответствующей категории.

Расшифровка результатов ультразвукового исследования глаза

После обследования врач сравнивает и изучает полученные данные. Далее, в зависимости от результатов обследования в заключении ставится норма или патология. Для проверки результатов исследования существует таблица нормальных значений:

  • хрусталик прозрачен;
  • задняя капсула хрусталика просматривается;
  • стекловидное тело прозрачное;
  • длина оси глаза 22,4–27,3 мм;
  • преломляющая сила глаза составляет 52,6–64,21 диоптрий;
  • ширина гипоэхогенной структуры зрительного нерва 2–2,5 мм.
  • толщина внутренних оболочек 0,7–1 мм;
  • объем стекловидного тела 4 см3;
  • размер передне-задней оси стекловидного тела составляет 16,5 мм.

Где сделать ультразвуковое исследование глаза

На сегодняшний день существует большое количество государственных многопрофильных и частных офтальмологических клиник, где можно сделать УЗИ глазных орбит. Стоимость процедуры зависит от уровня медицинского учреждения, аппарата, квалификации специалиста. Потому перед проведением исследования стоит ответственно подойти к выбору врача-офтальмолога, а также клиники, в которой пациент будет наблюдаться.

Использование известных биометрических формул приводит к недооценке оптической силы ИОЛ в глазах с аксиальной длиной более 24,5 мм и при выборе «минус»-ИОЛ . При длине передне-задней оси глаза (ПЗО) менее 22,0 мм и более 25,0 мм необходимо проведение повторных измерений биометрических показателей. По данным ряда авторов, при расчете ИОЛ на глазах с миопией рекомендуется формула Hagis . Показано, что при планировании целевой рефракции у пациентов с миопией различной степени до 75% пациентов ориентированы на послеоперационную миопию слабой степени для сохранения привычного образа жизни и зрительного режима . Ранее нами проведен ретроспективный анализ различных формул для расчета ИОЛ третьего, четвертого и пятого поколения при аксиальной длине глаза более 28 мм . Вместе с тем глаза с миопией и аксиальной длиной 2428 мм требуют особого подхода в выборе формул для расчета ИОЛ.

Цель - анализ эффективности формул для расчета ИОЛ и частоты развития интра- и послеоперационных осложнений при факоэмульсификации у пациентов с аксиальной длиной глаза 24,028,0 мм.

Материал и методы. Под наблюдением находились 39 пациентов (62 глаза) с миопией различной степени (средняя аксиальная длина глаза 25,87±1,2 мм). Критерием отбора пациентов была аксиальная длина глаза в диапазоне от 24,0 до 28,0 мм. В 53 случаях проведена факоэмульсификация катаракты (85,5%), в 9 случаях - ленсэктомия прозрачного хрусталика (14,5%) с имплантацией ИОЛ в офтальмологической клинике «Эксимер» (г. Москва) в период с 2009 по 2015 гг. Из 39 обследованных пациентов женщины составили 53,8% (n=21), мужчины - 46,2% (n=18). Средний возраст пациентов на момент операции составил 66±16,2 (2585) лет.

Во всех означенных случаях проведено комплексное предоперационное обследование. Для факоэмульсификации использовали микрохирургические системы Infinity (Alcon, США) и Millenium, Stellaris (Bausch&Lomb, США). Операцию проводили по стандартной методике, принятой в клинике, через роговичный височный тоннельный разрез 1,8 мм. В более чем половине исследованных случаев имплантировали заднекамерную эластичную моноблочную двояковыпуклую асферическую ИОЛ AcrySof IQSN60WF (n=34; 54,8%). Расчет оптической силы ИОЛ проводили по формуле SRK/T с учетом собственной кастомизированной константы, ретроспективное сравнение - по формулам Hoffer-Q, Holladay II, Haigis и Barrett. Период наблюдения пациентов составил от 6 до 48 (15,1±3,8) мес.

Все пациенты были разделены на две подгруппы в зависимости от аксиальной длины глаза. В группу I вошли пациенты с аксиальной длиной 24,025,9 мм (n=38; 61,3%), в группу II - с аксиальной длиной 26,0-28,0 мм (n=24; 38,7%). Группы стандартизированы по полу и возрасту. Целевым ориентиром служила послеоперационная рефракция в диапазоне ±1,0 дптр от эмметропии в 95% случаев и ±0,5 дптр от эмметропии в 90% случаев. Расчет хирургически индуцированного астигматизма проводили с помощью программы SIA Calculator 2.1.

Результаты и обсуждение. После оценки функциональных результатов в обеих группах проведен расчет средней числовой погрешности (СЧП) и медианной абсолютной погрешности (МАП) в группах I и II, включая средние значения и отклонение, а также диапазон значений. СЧП характеризует отклонение от заданных значений, выраженное в цифрах, а МАП - выраженное в процентах от абсолютного значения. В группе I для формулы SRK/T среднее значение СЧП составило -0,01±0,22 (от -0,49 до 0,37). Максимально близкие значения получены при использовании формул Haigis (0,01±0,35; от -0,71 до 0,8) и Barrett (-0,01±0,24; от -0,41 до 0,45), при этом значения стандартного отклонения и диапазон значений при использовании формулы Barrett были минимальными. При расчете оптической силы ИОЛ по формулам Hoffer-Q (значения СЧП 0,6±0,55; от -0,58 до 1,24) и Holladay II (0,37±0,43; от -0,61 до 1,22) отклонения от идеальной числовой погрешности были больше, чем при использовании других формул. Для формул Hoffer-Q и Holladay II характерен умеренный гиперметропический сдвиг, в то время как для формул SRK/T, Haigis и Barrett - легкий миопический сдвиг.

Схожие результаты получены при анализе СЧП при использовании различных формул для расчета ИОЛ в группе II. Применение формулы SRK/T соответствовало СЧП 1,05±0,65 (от -0,04 до 2,02), Hoffer-Q 1,35±0,55(от 0,39 до 2,24), Holladay II 1,21±0,55 (от 0,32 до 2,13), Haigis 0,38±0,46 (от -0,47 до 1,02) и Barrett 0,26±0,52 (от -0,62 до 1,02). Однако в отличие от группы I СЧП при рефракции цели ±1,0 дптр была значимо выше при использовании формул SRK/T, Hoffer-Q и Holladay II, чем при применении формул Haigis и Barrett, что связано с большей средней аксиальной длиной в группе II (27,2±0,6 против 25,1±0,6 в группе I).

Для уточнения полученных данных проведен расчет МАП в исследуемых группах. В группе I динамика МАП в целом соответствовала СЧП для соответствующих формул для расчета ИОЛ. Так, для SRK/T МАП составила 0,51±0,26 (от 0,02 до 0,91), Hoffer-Q 0,69±0,29 (от 0,09 до 1,19), Holladay II 0,48±0,29 (от 0,09 до 1,12), Haigis 0,31±0,2 (от 0 до 0,73) и Barrett 0,2±0,14 (от 0 до 0,59). Таким образом, при аксиальной длине 24,025,9 мм использование формул SRK/T, Haigis и Barrett приводит к сопоставимому рефракционному послеоперационному результату.

В группе II МАП при использовании формулы SRK/T составила 1,1±0,46 (от 0,34 до 1,95), Hoffer-Q 1,3±0,49 (от 0,44 до 2,15), а Holladay II 1,25±0,53 (от 0,24 до 2,14). Значимо меньшая МАП получена при применении формул Haigis (0,72±0,45; от 0,11 до 1,48) и Barrett (0,33±0,28; от 0 до 1,02), что свидетельствует о высокой эффективности данных формул при расчете ИОЛ на глазах с аксиальной длиной 26,027,9 мм.

В группе I целевым ориентирам послеоперационной рефракции (±1,0 дптр в 95% случаев) соответствовали все исследованные формулы. Рефракция ±0,5 дптр при использовании формулы SRK/T достигнута в 92,3% случаев, HofferQ - 84,1%, HolladayII - 91,3%, Haigis - 86,5% и Barrett - 94,2%. В группе II указанным целевым ориентирам для рефракции ±1,0 дптр соответствовал расчет оптической силы ИОЛ по формулам SRK/T (96,7%), Haigis и Barrett (100%). Целевая рефракция ±0,5 дптр в 90% случаев достигнута только при использовании формулы Barrett (91,5%). Другие исследуемые формулы не обеспечивают попадание в указанный диапазон в необходимом проценте случаев.

В общей группе (n=39) пациентов величина хирургически индуцированного астигматизма составила 1,08±0,43. При этом на глазах с нормальной аксиальной длиной при выполнении роговичного разреза величина хирургически индуцированного астигматизма составляет 1,21±0,57 . Таким образом, статистически значимых различий между нашими пациентами и данными литературы не выявлено.

В группе I интраоперационных осложнений не выявлено. Частота развития послеоперационных осложнений составила 31,6% (n=12), однако они носили транзиторный характер - десцеметит (n=9), отек роговицы (n=2) и повышение ВГД (n=1), и купировались после курса локальной медикаментозной терапии. В группе II интраоперационно в одном случае (4,2%) отмечали разрыв задней капсулы с последующей имплантацией трехчастной ИОЛ в борозду цилиарного тела и фиксацией оптической части ИОЛ в переднем капсулорексисе. Послеоперационные осложнения отмечались значимо реже (n=4; 16,7%) и включали отек роговицы (n=2) и десцеметит (n=1).

Выводы. Расчет оптической силы ИОЛ у пациентов с аксиальной длиной глаза 24,025,9 мм возможен с использованием каждой из пяти исследованных формул. Для глаз с аксиальной длиной 26,027,9 мм получена значимо меньшая медианная абсолютная погрешность при применении формул Haigis (0,72±0,45; от 0,11 до 1,48) и Barrett (0,33±0,28; от 0 до 1,02), что свидетельствует о высокой эффективности данных формул, при этом целевая рефракция ±0,5 дптр в 90% случаев достигнута только при использовании формулы Barrett.

Загрузка...