Медицинский портал. Щитовидная железа, Рак, диагностика

Генетическая терапия. Просто о сложном: как работает генная терапия и что она лечит

16886 0

Установление локализации и последовательности гена, мутации которого вызывают конкретные заболевания, а также самой мутации и современные способы ее тестирования позволяют диагностировать заболевание в нео- и даже пренатальный период развития организма. Это дает возможность смягчить проявление генетического дефекта с помощью медикаментозного лечения, диеты, переливания крови и т.д.

Однако такой подход не приводит к исправлению самого дефекта и, как правило, наследственные заболевания не излечиваются. Ситуация осложняется еще и тем, что мутация одного гена может давать самые разные последствия на организм. Если мутация гена вызывает изменения активности фермента, который он кодирует, то это может привести к накоплению токсичного субстрата или, наоборот, к дефициту соединения, необходимого для нормального функционирования клетки.

Хорошо известным примером такого заболевания является фенилкетонурия. Его вызывает мутация в гене печеночного фермента фенилаланиндегидроксилазы, катализирующего превращение фенилаланина в тирозин. В результате повышается уровень эндогенного фенилаланина в крови, что вызывает неправильное формирование миелиновой оболочки вокруг аксонов нервных клеток центральной нервной системы и, как следствие, тяжелую умственную отсталость.

Если мутация затрагивает ген структурного белка, то это может приводить к серьезным нарушениям на уровне клеток, тканей или органов. Примером такого заболевания является кистозный фиброз.

Делеция в гене, кодирующем белок, который называется транспортер кистозного фиброза, приводит к синтезу дефектного белка (отсутствие фенилаланина 508) и нарушениям транспорта ионов хлора сквозь клеточные мембраны. Одним из наиболее вредных последствий этого является то, что слизь, которая выстилает и защищает легкие, становится ненормально густой. Это затрудняет доступ к клеткам легких и способствует накоплению вредных микроорганизмов. Клетки, выстилающие воздухоносные пути легких, погибают и заменяются фиброзной рубцовой тканью (отсюда название болезни). В результате пациент погибает от нарушения дыхания.

Наследственные заболевания отличаются сложными клиническими проявлениями, и их традицинное лечение имеет в основном симптоматический характер: для лечения фенилкетонурии назначают безаланиновую диету, дефектные белки заменяют функциональным внутривенным введением, для компенсации утраченных функций проводят трансплантацию костного мозга или других органов. Все эти меры, как правило, малоэффективны, дороги, длительны, и лишь немногие пациенты доживают до старости. Поэтому разработка принципиально новых видов терапии очень актуальна.

Генная терапия

Генной терапией называется генетическая инженерия соматических клеток человека, направленная на исправление генетического дефекта, вызывающего заболевание. Коррекция специфического заболевания осуществляется путем введения в дефектные соматические клетки нормальных экспрессирующихся генов. К 80-м гг., когда были разработаны методы получения отдельных генов и созданы эукариотические экспрессирующие векторы, стали рутинными эксперименты по переносу генов на мышах, перспективы генной коррекции стали реальными.

В 1990 г. в США доктором У. Френч Андерсоном (W. French Andrson) были предпринята первая попытка генотерапии для лечения тяжелого комбинированного иммунодефицита (ТКИД) у трехлетней девочки Ашанти де Силва (Ashanthi da Silva). Это заболевание вызывается мутацией в гене, кодирующем аденозанаденилазу (АДА). Дефицит этого фермента способствует накоплению в крови аденозина и дезоксиаденозина, токсическое действие которых приводит к гибели В- и Т-лимфоцитов периферической крови и, как следствие, иммунодефициту.

Дети с таким заболеванием должны быть защищены от любых инфекций (содержаться в специальных стерильных камерах), поскольку любая болезнь может оказаться смертельной. Через 4 года после начала лечения у ребенка наблюдалась экспрессия нормально функционирующей АДА и облегчение симптомов ТКИД, что позволило ей покинуть стерильную камеру и жить нормальной жизнью.

Таким образом, была продемонстрирована принципиальная возможность успешной генетической терапии соматических клеток. Начиная с 90-х гг. проходят испытания генной терапии целого ряда генетических заболеваний, среди которых такие тяжелейшие, как гемофилия, СПИД, разные виды злокачественных новообразований, муковисцидоз и др. На данный момент поддаются излечению с помощью трансгенеза уже около 10 болезней человека.

Разнообразие генетических заболеваний предопределило развитие множества подходов генной терапии. При этом решаются 2 главные проблемы: средство доставки терапевтического гена; способ обеспечения адресной доставки к клеткам, предназначенным для коррекции. К настоящему времени все подходы к генной терапии соматических клеток можно разделить на две категории: терапия ex vivo и in vivo (рис. 3.15).


Рис. 3.15. Схема проведения генной терапии ex vivo (а) и in vivo (а)


Генная терапия ex vivo предполагает генетическое исправление дефектных клеток вне организма с последующим возвращением нормально функционирующих клеток в организм.

Генная терапия in vivo предусматривает доставку терапевтического гена непосредственно в клетки определенной ткани пациента. Рассмотрим эти подходы подробнее.

Генная терапия ex vivo включает следующие этапы:
1) получение дефектных клеток больного и их культивирование;
2) перенос нужного гена в изолированные клетки с помощью трансфекции терапевтической генной конструкции;
3) отбор и наращивание генетически исправленных клеток;
4) трансплантация или трансфузия этих клеток пациенту.

Использование собственных клеток пациента гарантирует, что после их возвращения у него не разовьется иммунный ответ. Процедура переноса генной конструкции должна быть эффективной, а нормальный ген должен стабильно поддерживаться и непрерывно экспрессироваться.

Средством переноса генов, созданного самой природой, являются вирусы. С целью получения эффективных векторов для доставки генов в основном используют две группы вирусов - аденовирусы и ретровирусы (рис. 3.16). В генной терапии применяют варианты генетически обезвреженных вирусов.



Рис. 3.16. Вирусы, применяемые для создания терапевтических векторов


Рассмотрим устройство и использование конструкций на основе ретро-вирусов. Напомним, что геном ретровируса представлен двумя идентичными одноцепочечными молекулами РНК, каждая из которых состоит из шести участков: два длинных концевых повтора (LTR) на 5" и 3" концах, некодирующая последовательность *Р+, необходимая для упаковки РНК в вирусную частицу, и три участка, кодирующих структурный белок внутреннего капсида (gag), обратную транскриптазу (pol) и белок оболочки (env) (рис. 3.17, а).



Рис. 3.17. Генетическая карта типичного ретровируса (а) и карта ретровирусного вектора (а)


Напомним, что жизненный цикл ретровируса включает следующие стадии:
1. Инфицирование клеток-мишени.
2. Синтез ДНК копии генома с помощью собственной обратной транскриптазы.
3. Транспорт вирусной ДНК в ядро.
4. Встраивание вирусной ДНК в хромосому клетки-хозяина.
5. Транскрипция мРНК с вирусной ДНК под контролем сильного промотора, локализованного на участке 5"-LTR.
6. Трансляция белков Gag, Pol и Env.
7. Образование вирусного капсида и упаковки двух РНК-цепей и молекул обратной транскриптазы.
8. Высвобождение вирионов из клетки.

При получении ретровирусного вектора полноразмерную ДНК ретро-вируса встраивают в плазмиду, удаляют большую часть гена gag и полностью гены pol и env, а вместо них встраивают «терапевтический» ген Т и при необходимости маркерный селективный ген Rg с собственным промотором (рис. 3.17, б). Транскрипция гена Т будет контролироваться все тем же сильным промотором, локализованным на 5"-LTR участке. На основе этой схемы созданы различные ретровирусные векторы и максимальный размер ДНК-вставки примерно 8 тыс. п.о.

Полученную таким образом конструкцию можно саму по себе использовать для трансформации, но ее эффективность и последующая интеграция в геном клетки-хозяина крайне низки. Поэтому была разработана методика упаковки полноразмерной РНК ретровирусного вектора в интактные вирусные частицы, которые с высокой частотой проникают в клетку и гарантированно встраиваются в геном хозяина. Для этого была создана так называемая «пакующая» клеточная линия. В двух разных участках хромосом этих клеток вшиты ретровирусные гены gag и pol-env, лишенные способности паковаться из-за отсутствия последовательности + (84*+) (рис. 3.18).


Рис. 3.18. Схема получения упакованного вирусного вектора


То есть оба эти фрагмента транскрибируются, но при этом образуются лишенные РНК пустые капсиды. При трансфекции РНК вирусного вектора в такие клетки она встраивается в хромосомную ДНК и транскрибируется с образованием полноразмерной РНК ретровируса, и в таких условиях в капсидах упаковывается только РНК вектора (только в ней имеется +-последовательность). Образующиеся интактные вирусные частицы используют для эффективной доставки ретровирусного вектора в клетки-мишени.

Ретровирусы активно инфицируют только интенсивно делящиеся клетки. Для переноса генов их обрабатывают очищенными частицами упакованного ретровирусного вектора или совместно культивируют с производящей их клеточной линией, а затем осуществляют селекцию для разделения клеток-мишеней и пакующих клеток.

Трансдуцированные клетки тщательно проверяют на уровень синтеза продукта терапевтического гена, отсутствие компетентных по репликации ретровирусов, отсутствие изменений способности клеток к росту или функционированию.

Наиболее пригодными для проведения генной терапии являются клетки костного мозга. Это связано с наличием в нем тотипотентных эмбриональных стволовых клеток, которые могут пролиферировать и дифференцироваться в различные типы клеток -В- и Т-лимфоциты, макрофаги, эритроциты, тромбоциты и остеокласты. Именно эти клетки применяют для лечения целого ряда наследственных заболеваний, среди них уже упомянутый нами тяжелый комбинированный иммунодефицит, болезнь Гоше, серповидноклеточная анемия, талассемия, остеопороз и др.

Помимо тотипотентных стволовых клеток костного мозга, которые трудно выделять и культивировать, используют стволовые клетки из пупoвинной крови (предпочтительное использование для генотерапии новорожденных), а также клетки печени - гепатоциты - для лечения гиперхолестеролемии.

При генной терапии in vivo особенно важно обеспечить доставку терапевтического гена к дефектным клеткам. Такую адресную доставку могут обеспечить модифицированные векторы, созданные на основе вирусов, способных инфицировать специфические виды клеток. Рассмотрим подход, разработанный для лечения уже упомянутого выше кистозного фиброза. Поскольку легкие являются открытой полостью, терапевтические гены к ним доставить относительно легко. Клонированный вариант здорового гена был введен в инактивированный аденовирус (рис. 3.19). Специфика этого типа вируса заключается в том, что он инфицирует выстилку легких, вызывая простуду.



Рис. 3.19. Схема получения вектора на основе аденовируса


Сконструированный таким образом вирус испытывали, распыляя его в нос и легкие экспериментальных животных, а затем людей-пациентов. В некоторых случаях наблюдалось введение и экспрессия здорового гена, и восстановление нормального переноса ионов хлора. Возможно, этот подход (введение нормального гена с помощью носовых аэрозолей) в ближайшем будущем будет широко использоваться для лечения симптомов кистозного фиброза в легких.

Кроме ретро- и аденовирусов в экспериментах по генной терапии используют и другие типы вирусов, например вирус Herpes simplex. Особенностью этого двунитевого (152 тыс. п.о.) ДНК-вируса является его способность специфически поражать нейроны. Известно множество генетических заболеваний, поражающих центральную и периферическую нервную систему - опухоли, метаболические нарушения, нейродегенеративные заболевания (болезнь Альцгеймера, болезнь Паркинсона).

Вирус простого герпеса I типа (HSV) является весьма подходящим вектором для терапии таких заболеваний. Капсид этого вируса сливается с мембраной нейрона, и его ДНК транспортируется в ядро. Предложено несколько способов переноса терапевтического гена с помощью HSV-векторов и проведены успешные испытания на экспериментальных животных.

Вирусные векторы имеют несколько недостатков: высокая стоимость, ограниченная клонирующая емкость и возможная воспалительная реакция. Так, в 1999 г. в результате развившегося необычайно сильного иммунного ответа на введение аденовирусного вектора погиб 18-летний доброволец, принимавший участие в испытаниях препарата. В 2002 г. у двух детей во Франции во время лечения от иммунодефицита (введением терапевтических генов в стволовые клетки с помощью ретровирусов) развилось состояние, похожее на лейкемию.

Поэтому разрабатываются невирусные системы доставки генов. Самый простой и неэффективный способ - это инъекция плазмидной ДНК в ткани. Второй подход - это бомбардировка тканей микрочастицами золота (1-3 мкм), конъюгированными с ДНК. При этом терапевтические гены экспрессируются в тканях-мишенях и их продукты - терапевтические белки - поступают в кровь. Основным недостатком этого подхода является преждевременная инактивация или разрушение этих белков компонентами крови.

Доставку ДНК можно осуществить, упаковав ее в искусственную липидную оболочку. Полученные таким образом сферические частицы-липосомы легко проникают через клеточную мембрану. Созданы липосомы с самыми разными свойствами, однако пока эффективность такой доставки невысока, поскольку большая часть ДНК подвергается лизосомному разрушению. Также для доставки генетической конструкции синтезируют конъюгаты ДНК с различными молекулами, способными обеспечить ее сохранность, адресную доставку и проникновение в клетку.

В последние годы проводятся интенсивные эксперименты по созданию искусственной 47-й хромосомы, которая позволила бы включить большое количество генетического материала с полным набором регуляторных элементов для одного или нескольких терапевтических генов. Это дало бы возможность использовать геномный вариант терапевтического гена и тем самым обеспечить его стабильность и эффективную длительную экспрессию. Проведенные эксперименты показали, что создание искусственной хромосомы человека, содержащей терапевтические гены, вполне реально, однако пока непонятно, каким образом вводить такую огромную молекулу в ядро клетки-мишени.

Основными проблемами, которые стоят перед генной терапией, помимо риска тяжелой иммунной реакции, являются трудности длительного хранения и функционирования терапевтической ДНК в организме пациента, мультигенность многих болезней, делающая их трудной мишенью для генной терапии, а также риск использования вирусов в качестве векторов.

Н.А. Воинов, Т.Г. Волова

Введение

С каждым годом в научных журналах появляется всё больше статей о медицинских клинических исследованиях, в которых, так или иначе, применялось лечение, основанное на введении различных генов - генная терапия. Это направление выросло из таких хорошо развивающихся разделов биологии, как молекулярная генетика и биотехнология.

Зачастую, когда обычные (консервативные) методы уже перепробованы, именно генная терапия может помочь пациентам выжить и даже полностью выздороветь. Например, это касается наследственных моногенных заболеваний, то есть таких, которые вызваны дефектом в одном-единственном гене, а также и многих других . Или, к примеру, генная терапия может выручить и спасти конечность тем больным, у которых сужен просвет сосудов в нижних конечностях и вследствие этого развилась стойкая ишемия окружающих тканей, то есть эти ткани испытывают сильный недостаток питательных веществ и кислорода, которые в норме разносятся кровью по организму . Хирургическими манипуляциями и лекарствами таких пациентов лечить зачастую не получается, зато если локально заставить клетки выбрасывать наружу больше белковых факторов, которые повлияли бы на процесс образования и прорастания новых сосудов, то ишемия стала бы гораздо менее выраженной и жить больным станет гораздо легче.

Генную терапию сегодня можно определить как лечение заболеваний путем введения генов в клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых функций. Первые клинические испытания методов генной терапии были предприняты совсем недавно - 22 мая 1989 года в целях диагностики рака. Первым наследственным заболеванием, в отношении которого были применены методы генной терапии, оказался наследственный иммуннодефицит .

С каждым годом число успешно проведенных клинических испытаний лечения различных заболеваний с использованием генной терапии растёт, и к январю 2014 г. достигло 2 тысяч .

Вместе с тем и в современных исследованиях по генной терапии необходимо учитывать, что последствия манипулирования генами или «перетасованными» (рекомбинантными) ДНК in vivo (лат. буквально "в живом") изучены недостаточно. В странах с наиболее продвинутым уровнем исследований в этой области, особенно в США, медицинские протоколы с использованием смысловых последовательностей ДНК подвергаются обязательной экспертизе в соответствующих комитетах и комиссиях. В США таковыми являются Консультативный комитет по рекомбинантным ДНК (Recombinant DNA Advisory Committee, RAC) и Управление по лекарствам и пищевым продуктам (Food and Drug Administration, FDA) с последующим обязательным утверждением проекта директором Национальных институтов здоровья (National Institutes of Health) .

Итак, мы определились, что данное лечение основано на том, что если какие-то ткани организма испытывают недостаток некоторых отдельных белковых факторов, то это можно исправить введением в эти ткани соответствующих генов, кодирующих белки, и всё станет более или менее замечательно. Сами белки вводить не получится, потому что наш организм тут же среагирует неслабой иммунной реакцией, да и длительность действия была бы недостаточной. Теперь следует определиться с методом доставки гена в клетки.

Трансфекция клеток

Для начала стоит ввести определения некоторых терминов.

Транспорт генов осуществляется благодаря вектору - это молекула ДНК, используемая как «транспортное средство» для искусственного переноса генетической информации в клетку. Выделяют множество разновидностей векторов: плазмидные, вирусные, а также космиды, фазмиды, искусственные хромосомы и т.д. Принципиально важно, что векторы (в частности, плазмидные) обладают характерными для них свойствами:

1. Точка начала репликации (ori) - последовательность нуклеотидов, с которой начинается удвоение ДНК. Если векторная ДНК не сможет удваиваться (реплицироваться), то необходимый лечебный эффект не будет достигнут, потому что она просто быстро расщепится внутриклеточными ферментами-нуклеазами, а из-за недостатка матриц будет в итоге образовано гораздо меньше молекул белка. Следует отметить, что эти точки специфичны для каждого биологического вида, то есть если векторную ДНК предполагается получать путём её размножения в культуре бактерий (а не просто химическим синтезом, что обычно гораздо дороже), то потребуются отдельно две точки начала репликации - для человека и для бактерий;

2. Сайты рестрикции - специфические короткие последовательности (чаще палиндромные), которые узнаются специальными ферментами (эндонуклеазы рестрикции) и разрезаются ими определённым образом - с образованием «липких концов» (рис.1).

Рис.1 Образование "липких концов" с участием рестриктаз

Эти сайты необходимы для того, чтобы сшить векторную ДНК (которая, по сути, является «болванкой») с нужными терапевтическими генами в единую молекулу. Такая сшитая из двух или нескольких частей молекула зовётся «рекомбинантной»;

3. Понятно, что нам желательно бы получить миллионы копий рекомбинантной молекулы ДНК. Опять-таки, если мы имеем дело с культурой клеток бактерий, то далее эту ДНК нужно выделить. Проблема заключается в том, что далеко не все бактерии проглотят нужную нам молекулу, некоторые не станут этого делать. Чтобы эти две группы всё-таки различить, в векторную ДНК вставляют селективные маркёры - участки устойчивости к определённым химическим веществам; теперь если в среду добавить эти самые вещества, то выживут только те, которые обладают устойчивостью к ним, а остальные погибнут.

Все эти три составляющие можно наблюдать и в самой первой искусственно синтезированной плазмиде (рис.2).

Рис.2

Сам процесс внедрения плазмидного вектора в определённые клетки называется трансфекцией . Плазмида - это довольно короткая и обычно кольцевая молекула ДНК, которая находится в цитоплазме бактериальной клетки. Плазмиды не связаны с бактериальной хромосомой, они могут реплицироваться независимо от нее, могут выбрасываться бактерией в окружающую среду или, наоборот, поглощаться (процесс поглощения - трансформация ). С помощью плазмид бактерии могут обмениваться генетической информацией, например, передавать устойчивость к определённым антибиотикам.

Плазмиды существуют в бактериях в естественных условиях. Но никто не может помешать исследователю искусственно синтезировать плазмиду, которая будет обладать нужными для него свойствами, вшить в нее ген-вставку и внедрить в клетку. В одну и ту же плазмиду можно вшивать разные вставки .

Методы генной терапии

Существует два основных подхода, различающиеся природой клеток-мишеней:

1. Фетальная, при которой чужеродную ДНК вводят в зиготу (оплодотворённую яйцеклетку) или эмбрион на ранней стадии развития; при этом ожидается, что введённый материал попадёт во все клетки реципиента (и даже в половые клетки, обеспечив тем самым передачу следующему поколению). В нашей стране она фактически запрещена ;

2. Соматическая, при которой генетический материал вводят уже родившемуся в неполовые клетки и он не передаётся половым клеткам.

Генная терапия in vivo основана на прямом введении клонированных (размноженных) и определенным образом упакованных последовательностей ДНК в определённые ткани больного. Особенно перспективным для лечения генных болезней in vivo представляется введение генов с помощью аэрозольных или инъецируемых вакцин. Аэрозольная генотерапия разрабатывается, как правило, для лечения лёгочных заболеваний (муковисцидоз, рак легких).

Разработке программы генной терапии предшествует много этапов. Это и тщательный анализ тканеспецифической экспрессии соответствующего гена (т. е., синтеза на матрице гена какого-то белка в определённой ткани), и идентификация первичного биохимического дефекта, и исследование структуры, функции и внутриклеточного распределения его белкового продукта, а также биохимический анализ патологического процесса. Все эти данные учитываются при составлении соответствующего медицинского протокола.

Важно, что при составлении схем коррекции генов оценивается эффективность трансфекции, степень исправления первичного биохимического дефекта в условиях клеточных культур (in vitro, "в пробирке") и, что особенно важно, in vivo на животных - биологических моделях. Только после этого можно приступать к программе клинических испытаний .

Прямая доставка и клеточные носители терапевтических генов

Существует множество методов внедрения чужеродной ДНК в эукариотическую клетку: некоторые зависят от физической обработки (электропорация, магнетофекция и т.д.), другие - от применения химических материалов или биологических частиц (например, вирусов), которые используются как переносчики. Сразу стоит оговориться, что обычно комбинируются химические и физические методы (например, электропорация + окутывание ДНК липосомами)

Прямые методы

1. Трансфекция на химической основе может быть классифицирована на несколько видов: с использованием вещества циклодекстрина, полимеров, липосом или наночастиц (с или без химической или вирусной функционализации, т.е. модификации поверхности).
а) Один из самых дешевых методов - использование фосфата кальция. Он повышает эффективность включения ДНК в клетки в 10-100 раз. ДНК образует с кальцием прочный комплекс, что обеспечивает его эффективное поглощение. Недостаток - ядра достигает всего около 1 - 10% ДНК. Метод используется in vitro для переноса ДНК в клетки человека (рис.3);

Рис.3

б) Применение сильноразветвленных органических молекул - дендример, для связывания ДНК и переноса её в клетку (рис.4);

Рис.4

в) Очень эффективным методом для трансфекции ДНК является внедрение её через липосомы - малые, окруженные мембраной тельца, которые могут сливаться с клеточной цитоплазматической мембраной (ЦПМ), представляющая собой двойной слой из липидов. Для эукариотических клеток трансфекция производится эффективнее с применением катионных липосом, потому что клетки к ним более чувствительны. Процесс имеет своё название - липофекция. Этот метод сегодня считается одним из самых безопасных. Липосомы нетоксичны и неиммуногенны. Однако, эффективность переноса генов с помощью липосом ограничена, поскольку внесенная ими ДНК в клетках обычно сразу же захватывается лизосомами и разрушается. Введение ДНК в клетки человека с помощью липосом сегодня является главным при терапии in vivo (рис.5);

Рис.5

г) Еще один метод - использование катионных полимеров, таких как диэтиламиноэтил-декстран или полиэтиленимин. Отрицательно заряженные молекулы ДНК связываются с положительно заряженными поликатионами, и этот комплекс далее проникает в клетку путём эндоцитоза. ДЭАЭ-декстран изменяет физические свойства плазматической мембраны и стимулирует поглощение этого комплекса клеткой. Главный недостаток метода заключается в том, что ДЭАЭ-декстран в высоких концентрациях токсичен. Метод не получил распространения в генотерапии;

д) С помощью гистонов и других ядерных белков. Эти белки, содержащие много положительно заряженных аминокислот (Lys, Arg), в естественных условиях помогают компактно уложить длинную цепь ДНК в сравнительно небольшое ядро клетки.

2. Физические методы:

а) Электропорация - очень популярный метод; мгновенное повышение проницаемости мембраны достигается за счет того, что клетки подвергаются коротким воздействиям интенсивного электрического поля. Показано, что в оптимальных условиях количество трансформантов может достигать 80% выживших клеток. На человеке на сегодняшний день не используется (рис.6).

Рис.6

б) «Cell squeezing» - метод, изобретенный в 2013 г. Он позволяет доставить молекулы в клетки путём "мягкого сдавливания" клеточной мембраны. Метод исключает возможность токсичности или неправильного попадания по мишени, так как он не зависит от внешних материалов или электрических полей;

в) Сонопорация - метод искусственного переноса чужеродных ДНК в клетки с помощью воздействия на них ультразвуком, вызывающим открывание пор в клеточной мембране;
г) Оптическая трансфекция - метод, при котором производится крошечное отверстие в мембране (около 1 мкм в диаметре) при использовании сильносфокусированного лазера;
д) Гидродинамическая трансфекция - метод доставки генетических конструкций, белков и т.д. путем контролируемого повышения давления в капиллярах и межклеточной жидкости, что вызывает кратковременное повышение проницаемости клеточных мембран и образование в них временных пор. Осуществляется быстрой инъекцией в ткань, доставка при этом является неспецифичной. Эффективность доставки для скелетной мышцы - от 22 до 60% ;

е) Микроинъекция ДНК - введение в ядро клетки животных с помощью тонких стеклянных микротрубочек (d=0,1-0,5 мкм). Недостаток - сложность метода, высока вероятность разрушения ядра либо ДНК; можно трансформировать ограниченное число клеток. Не используется для человека.

3. Методы на основе частиц.

а) Прямой подход к трансфекции - генная пушка, при этом ДНК сцепляют в наночастицу с инертными твердыми веществами (чаще золото, вольфрам), которая затем «выстреливает» направленно в ядра клеток-мишеней. Этот метод применяется in vitro и in vivo для введения генов, в частности, в клетки мышечных тканей, например при таком заболевании, как миодистрофия Дюшена. Размеры частиц золота - 1-3 мкм (рис.7).

Рис.7

б) Магнитофекция - метод, использующий силы магнетизма для доставки ДНК в клетки-мишени. Сначала нуклеиновые кислоты (НК) ассоциируются с магнитными наночастицами, а далее, под действием магнитного поля, частицы загоняются в клетку. Эффективность почти 100%-ная, отмечена явная нетоксичность. Уже через 10-15 мин частицы регистрируются в клетке - это гораздо быстрее других методик.
в) Импалефекция (impalefection; "impalement", букв. "сажание на кол" + "infection") - метод доставки с применением наноматериалов, таких как углеродные нанотрубки и нановолокна. При этом клетки буквально протыкаются подстилкой из нанофибрилл . Приставка «нано» применяется для обозначения их очень маленьких размеров (в пределах миллиардных долей метра) (рис.8).

Рис.8

Отдельно стоит выделить такой метод, как РНК-трансфекция: в клетку доставляется не ДНК, а молекулы РНК - их «преёмники» в цепи биосинтеза белка; при этом активизируются специальные белки, разрезающие РНК на короткие фрагменты -- т.н. малые интерферирующих РНК (миРНК). Эти фрагменты связываются с другими белками и, в конце концов, это приводит к угнетению экспрессии клеткой соответствующих генов. Таким образом можно заблокировать в клетке действие тех генов, которые потенциально на данный момент приносят больше вреда, чем пользы. Широкое применение РНК-трансфекция нашла, в частности, в онкологии.

Основные принципы доставки генов с использованием плазмидных векторов рассмотрены. Теперь можно перейти к рассмотрению вирусных методов. Вирусы - это неклеточные формы жизни, чаще всего представляющие собой молекулу нуклеиновой кислоты (ДНК или РНК), обёрнутой в белковую оболочку. Если вырезать из генетического материала вируса все те последовательности, которые вызывают возникновение заболеваний, то весь вирус также можно успешно превратить в «транспортное средство» для нашего гена.

Процесс внедрения ДНК в клетку, опосредованное вирусом, называется трансдукцией .
На практике чаще всего используют ретровирусы, аденовирусы и аденоассоциированные вирусы (AAV). Для начала стоит разобраться, каким должен быть идеальный кандидат для трансдукции среди вирусов. Критерии таковы, что он должен быть:

Стабилен;
. ёмок, то есть вмещать достаточное количество ДНК;
. инертным в отношении метаболических путей клетки;
. точным - в идеале, должен встраивать свой геном в конкретный локус генома ядра хозяина и др.

В реальной жизни очень сложно скомбинировать хотя бы несколько пунктов, так что обычно выбор происходит при рассмотрении каждого индивидуального случая в отдельности (рис.9).

Рис.9

Из всех трёх перечисленных наиболее используемых вирусов самыми безопасными и одновременно самыми точными являются AAV. Их почти что единственный недостаток - сравнительно малая ёмкость (ок. 4800 п.н.), которая, однако, оказывается достаточной для многих генов .

Помимо перечисленных методов достаточно часто генная терапия применяется в комбинации с клеточной: при этом сначала в питательную среду высаживают культуру определённых клеток человека, после этого тем или иным способом внедряют в клетки нужные гены, некоторое время культивируют и снова пересаживают в организм хозяина. В результате клеткам можно вернуть их нормальные свойства. Так, к примеру, модифицировали белые клетки крови человека (лейкоциты) при лейкемии (рис.10).

Рис.10

Судьба гена после его попадания в клетку

Так как с вирусными векторами всё более-менее ясно в силу их свойства более эффективно доставлять гены до конечной цели - ядра, то остановимся на судьбе плазмидного вектора.

На данном этапе мы добились того, что ДНК прошла первый большой барьер - цитоплазматическую мембрану клетки.

Далее, в комплексе с другими веществами, оболочкой или без, ей необходимо достигнуть клеточного ядра, чтобы специальный фермент - РНК-полимераза - синтезировала молекулу информационной РНК (иРНК) на матрице ДНК (этот процесс называется транскрипция ). Только после этого иРНК выйдет в цитоплазму, образует комплекс с рибосомами и согласно генетическому коду синтезируется полипептид - например, фактор роста сосудов (VEGF), который начнёт выполнять определённую терапевтическую функцию (в данном случае - запустит процесс образования ветвлений сосудов в ткани, подверженной ишемии).

Что касается экспрессии введенных генов в требуемом типе клеток, то эта задача решается с помощью регуляторных элементов транскрипции. Ткань, в которой происходит экспрессия, часто определяется комбинацией специфичного для этой ткани энхансера («усиливающей» последовательности) с определенным промотором (последовательность нуклеотидов, с которой РНК-полимераза начинает синтез), который может быть индуцируемым . Известно, что активность генов можно модулировать in vivo внешними сигналами, а так как энхансеры могут работать с любым геном, то в вектора можно вводить еще инсуляторы, которые помогают энхансеру работать независимо от его положения и могут вести себя как функциональные барьеры между генами. Каждый энхансер содержит набор участков связывания активирующих или супрессирующих белковых факторов . С помощью промоторов можно также регулировать уровень экспрессии генов. Например, есть металлотионеиновые или температурочувствительные промоторы; промоторы, управляемые гормонами.

Экспрессия гена зависит от его положения в геноме. В большинстве случаев существующие вирусные методы приводят лишь к случайному встраиванию гена в геном. Чтобы исключить такую зависимость, при конструировании векторов снабжают ген известными нуклеотидными последовательностями, которые позволяют гену экспрессироваться независимо от места его встраивания в геном.

Наиболее простой путь регуляции экспрессии трансгена - это обеспечение его индикаторным промотором, который чувствителен к физиологическому сигналу, такому, как выделение глюкозы или гипоксия. Такие «эндогенные» контролирующие системы могут быть полезны в некоторых ситуациях, таких, как осуществление глюкозозависимого контроля продукции инсулина. Более надежны и универсальны «экзогенные» системы контроля, когда экспрессия гена контролируется фармакологически введением маленькой лекарственной молекулы. В настоящее время известны 4 основные системы контроля - регулируемые тетрациклином (Tet), стероидом насекомых, экдизоном или его аналогами, антипрогестиновым препаратом майфпристоном (RU486) и химическими димеризаторами, такими, как рапамицин и его аналоги. Все они включают лекарственно зависимое привлечение домена активации транскрипции к основному промотору, ведущему нужный ген, но отличаются по механизмам этого привлечения .

Заключение

Обзор данных позволяет прийти к заключению, что, несмотря на усилия многих лабораторий мира, все уже известные и испытанные in vivo и in vitro векторные системы далеки от совершенства . Если проблема доставки чужеродной ДНК in vitro практически решена, а ее доставка в клетки-мишени разных тканей in vivo успешно решается (главным образом путем создания конструкций, несущих рецепторные белки, в том числе и антигены, специфичные для тех или иных тканей), то другие характеристики существующих векторных систем - стабильность интеграции, регулируемая экспрессия, безопасность - все еще нуждаются в серьезных доработках.

Прежде всего, это касается стабильности интеграции. До настоящего времени интеграция в геном достигалась только при использовании ретровирусных либо аденоассоциированных векторов. Повысить эффективность стабильной интеграции можно путем совершенствования генных конструкций типа рецептор-опосредованных систем либо путем создания достаточно стабильных эписомных векторов (то есть ДНК-структур, способных к длительному пребыванию внутри ядер). В последнее время особое внимание уделяется созданию векторов на базе искусственных хромосом млекопитающих. Благодаря наличию основных структурных элементов обычных хромосом такие мини-хромосомы длительно удерживаются в клетках и способны нести полноразмерные (геномные) гены и их естественные регуляторные элементы, которые необходимы для правильной работы гена, в нужной ткани и в должное время.

Генная и клеточная терапия открывает блестящие перспективы для восстановления утраченных клеток и тканей и генно-инженерного конструирования органов, что, несомненно, существенно расширит арсенал методов для медико-биологических исследований и создаст новые возможности для сохранения и продления жизни человека .

Генная терапия - это лечение наследственных, ненаследственных, которое осуществляется путем введения в клетки пациента других генов. Целью терапии является устранение генных дефектов либо придание клеткам новых функций. Намного проще ввести в клетку здоровый, полноценно работающий ген, чем исправлять дефекты в имеющемся.

Генная терапия ограничивается исследованиями в соматических тканях. Это связано с тем, что любое вмешательство в половые и зародышевые клетки может дать совершенно непредсказуемый результат.

Применяемая в настоящее время методика эффективна при лечении как моногенных, так и мультифакториальных заболеваний (злокачественные опухоли, некоторые виды тяжелых сердечно-сосудистых, вирусных заболеваний).

Около 80% всех проектов генной терапии касаются ВИЧ-инфекции и В настоящее время ведутся исследования таких как гемофилия В, муковисцидоз, гиперхолестеринемия.

Лечение подразумевает:

· выделение и размножение отдельных типов клеток пациента;

· введение чужеродных генов;

· отбор клеток, в которых «прижился» чужеродный ген;

· вживление их больному (например, посредством переливания крови).

Генная терапия основывается на введении клонированных ДНК в ткани больного. Самыми эффективными методами при этом считаются инъекционные и аэрозольные вакцины.

Генная терапия работает в двух направлениях:

1. Лечение моногенных заболеваний. К ним относятся нарушения в работе головного мозга, которые связаны с какими-либо повреждениями клеток, которые вырабатывают нейромедиаторы.

2. Лечение Основные подходы, использующиеся в данной области:

· генетическое усовершенствование иммунных клеток;

· повышение иммунореактивности опухоли;

· блок экспрессии онкогенов;

· защита здоровых клеток от химиотерапии;

· ввод генов-супрессоров опухоли;

· производство противоопухолевых веществ здоровыми клетками;

· продукция противоопухолевых вакцин;

· локальное воспроизведение нормальных тканей при помощи антиоксидантов.

Использование генной терапии имеет много плюсов и в некоторых случаях является единственным шансом на нормальную жизнь для больных людей. Тем не менее, эта область науки до конца не изучена. Существует международный запрет на испытания на половых и доимплантационных зародышевых клетках. Это сделано с целью предотвращения нежелательных генных конструкций и мутаций.

Разработаны и общепризнанны некоторые условия, при которых допускаются клинические испытания:

    Ген, перенесенный в клетки-мишени, должен быть активен продолжительное время.

    В чужеродной среде ген должен сохранять свою эффективность.

    Перенос гена не должен вызывать негативных реакций в организме.

Существует ряд вопросов, которые и сегодня остаются актуальными для многих ученых по всему миру:

    Смогут ли ученые, работающие в области генной терапии, разработать полную генокоррекцию, которая не будет представлять угрозы потомству?

    Будет ли необходимость и полезность генотерапевтической процедуры для отдельной супружеской пары превосходить риск этого вмешательства для будущего человечества?

    Оправданы ли подобные процедуры, учитывая в будущем?

    Каким образом будут соотноситься подобные процедуры на человеке с вопросами гомеостаза биосферы и общества?

В заключении можно отметить, что генетическая терапия на современном этапе предлагает человечеству пути лечения самых тяжелых заболеваний, которые совсем недавно считались неизлечимыми и смертельными. Однако, в то же время, развитие этой науки ставит перед учеными новые проблемы, которые необходимо решать уже сегодня.

Генотерапия - совокупность генноинженерных (биотехнологических) и медицинских методов, направленных на внесение изменений в генетический аппарат соматических клеток человека в целях лечения заболеваний. Это новая и бурно развивающаяся область, ориентированная на исправление дефектов, вызванных мутациями (изменениями) в структуре ДНК, или придания клеткам новых функций.

Концепция генотерапии, появилась сразу после открытия явления трансформации у бактерийи изучения механизмов трансформации клеток животных опухолеобразующимивирусами. Такие вирусы могут осуществлять стабильное внедрение генетического материала вгеномклетки хозяина, поэтому было предложено использовать их в качествевекторовдля доставки желаемой генетической информации в геном клеток. Предполагалось, что такие векторы могут в случае необходимости поправлять дефекты генома.

Реальностью генная коррекция соматических клеток стала после 1980-х годов, когда были разработаны методы получения изолированных генов, созданы эукариотические экспрессирующие векторы, стали обычными переносы генов у мышей и других животных.

Исторически генная терапия нацеливалась на лечение наследственных генетических заболеваний, однако поле её применения, по крайней мере теоретически, расширилось. В настоящее время генную терапию рассматривают как потенциально универсальный подход к лечению широкого спектра заболеваний, начиная от наследственных, генетических и заканчивая инфекционными.

К генно-терапевтическим подходам теперь относят также и такие подходы, когда клетки модифицируют, чтобы усилить иммунный ответорганизма на нежелательные явления, вызванные инфекцией или возникновением опухолей. Модификация также осуществляется введением новой генетической информации либо в клетки, против которых хотят увеличить иммунный ответ, либо в клетки иммунной системы, с помощью которых хотят усилить этот эффект. Хотя строго говоря эта стратегия не совсем вписывается в классическое понятие генной терапии.

Главной проблемой является преодоление барьеров для проникновения терапевтического агента в опухоль с минимальной токсичностью для здоровых клеток. Модели дают очень обещающие результаты, однако даже с лучшими животными моделями остается проблема перехода к человеку, который отличается и биохимически и физиологически от модели.

3. Роль мелатонина в формировании суточной, сезонной ритмичности, и в адаптации к сезонным изменениям. Влияние мелатонина на репродуктивную функцию млекопитающих и на характер индивидуального развития. Основные этапы онтогенеза на которых изменяется продукция мелатонина, их значение.

Основные функции: Регулирует деятельность эндокринной системы, кровяное давление, периодичность сна, регулирует сезонную ритмику у многих животных, замедляет процессы старения, усиливает эффективность функционирования иммунной системы, обладает антиоксидантными свойствами, влияет на процессы адаптации при смене часовых поясов, кроме того, мелатонин участвует в регуляции, кровяного давления, функций пищеварительного тракта, работы клеток головного мозга.

Влияние на сезонную ритмику и размножение

Так как продукция мелатонина зависит от длины светового дня, многие животные используют ее как «сезонные часы». У людей, как и у животных, продукция мелатонина летом меньше, чем зимой. Таким образом, мелатонин может регулировать функции, зависящие от фотопериода - размножение, миграционное поведение, сезонную линьку. У видов птиц и млекопитающих, которые размножаются при длинном дне, мелатонин подавляет секрецию гонадотропинов и снижает уровень половой активности. У животных, размножающихся при коротком световом дне, мелатонин стимулирует половую активность. Влияние мелатонина на репродуктивную функцию у человека недостаточно изучено. В период полового созревания пиковая (ночная) концентрация мелатонина резко снижается. У женщин с гипофизарной аменореей концентрация мелатонина достоверно выше, чем у здоровых. Эти данные позволяют предполагать, что мелатонин подавляет репродуктивные функции у женщин.

Циркадный ритм и сон

Одним из основных действий мелатонина является регуляция сна. Мелатонин - основной компонент пейсмейкерной системы организма. Он принимает участие в создании циркадианного ритма: он непосредственно воздействует на клетки и изменяет уровень секреции другихгормонови биологически активных веществ, концентрация которых зависит от времени суток. Влияние светового цикла на ритм секреции мелатонина показано в наблюдении за слепыми. У большинства из них обнаружена ритмичная секреция гормона, но со свободно меняющимся периодом, отличающимся от суточного (25-часовой цикл по сравнению с 24-часовым суточным). То есть у человека ритм секреции мелатонина имеет вид циркадианной мелатониновой волны, «свободно бегущей» в отсутствие смены циклов свет-темнота. Сдвиг ритма секреции мелатонина происходит и при перелёте через часовые пояса.

Роль эпифиза и эпифизарного мелатонина в суточной и сезонной ритмике, режиме сна-бодрствования на сегодняшний день представляется несомненной. У диурнальных (дневных) животных (в том числе у человека) секреция мелатонина эпифизом совпадает с привычными часами сна. Проведенными исследованиями было доказано, что повышение уровня мелатонина не является обязательным сигналом к началу сна. У большинства испытуемых прием физиологических доз мелатонина вызывал лишь мягкий седативный эффект и снижал реактивность на обычные окружающие стимулы.

С возрастом активность эпифиза снижается, поэтому количество мелатонина уменьшается, сон становится поверхностным и беспокойным, возможна бессонница. Мелатонин способствует устранению бессонницы, предотвращает нарушение суточного режима организма ибиоритма.

Основное влияние мелатонина на эндокринную систему у многих видов заключается в торможении секреции гонадотропинов. Кроме того, снижается, но в меньшей степени, секреция других тропных гормонов передней долигипофиза-кортикотропина,тиротропина,соматотропина. Мелатонин снижает чувствительность клеток передней доли к гонадотропин-рилизинг фактору и может подавлять его секрецию.

Данные экспериментов свидетельствуют о том, что под влиянием мелатонина повышается содержание ГАМК- в ЦНС исеротонинавсреднем мозгеигипоталамусе. Известно, что ГАМК является тормозныммедиаторомв ЦНС, а снижение активности серотонинэргических механизмов может иметь значение впатогенезедепрессивных состояний.

Недостаток мелатонина в организме

Эксперименты на лабораторных животных показали, что при недостатке мелатонина, вызванном удалением рецепторов, животные начинали быстрее стареть: раньше начиналась менопауза, накапливались свободнорадикальные повреждения клеток, снижалась чувствительность кинсулину, развивалисьожирениеирак.

БИЛЕТ № 56

"

Генная терапия человека в широком смысле предусматривает введение в клетки функционально активного гена (генов) с целью исправления генетического дефекта. Существуют два возможных пути лечения наследственных болезней. В первом случае генетической трансформации подвергают соматические клетки (клетки, отличные от половых). При этом коррекция генетического дефекта ограничивается определенным органом или тканью. Во втором случае изменяют генотип клеток зародышевой линии (сперматозоидов или яйцеклеток) или оплодотворенных яйцеклеток (зигот), чтобы все клетки развившегося из них индивидуума имели "исправленные" гены. В результате генной терапии с использованием клеток зародышевой линии генетические изменения передаются из поколения в поколение.

Политика в области генной терапии соматических клеток.

В 1980 г. представители католической, протестантской и иудейской общин США написали открытое письмо Президенту с изложением своих взглядов на использование генной инженерии применительно к человеку. Для оценки этических и социальных аспектов этой проблемы были созданы Президентская комиссия и комиссия Конгресса. Это были очень важные инициативы, поскольку в США введение в действие программ, затрагивающих интересы общества, часто осуществляется на основе рекомендаций подобных комиссий. В окончательных заключениях обеих комиссий проводилась четкая граница между генной терапией соматических клеток и генной терапией клеток зародышевой линии. Генная терапия соматических клеток была отнесена к стандартным методам медицинского вмешательства в организм, сходным с трансплантацией органов. В противоположность этому генная терапия клеток зародышевой линии была сочтена технологически очень сложной и проблематичной с точки зрения этики, чтобы безотлагательно начинать ее практическое применение. Был сделан вывод о необходимости выработки четких правил, регулирующих исследования в области генной терапии соматических клеток; разработка подобных документов применительно к генной терапии клеток зародышевой линии была сочтена преждевременной. Чтобы пресечь все незаконные действия, было решено прекратить все эксперименты в области генной терапии клеток зародышевой линии.

К 1985 г. разработали документ, озаглавленный "Положения о составлении и подаче заявок на проведение экспериментов в области генной терапии соматических клеток". В нем содержалась вся информация о том, какие данные должны быть представлены в заявке на разрешение испытаний в области генной терапии соматических клеток на человеке. За основу были взяты правила, регулирующие лабораторные исследования с рекомбинантными ДНК; они были лишь адаптированы применительно к биомедицинским целям.

Биомедицинское законодательство было пересмотрено и дополнено в 1970-х гг. в ответ на обнародование в 1972 г. результатов 40-летнего эксперимента, проводившегося Национальной службой здравоохранения США в Алабаме на группе из 400 неграмотных афроамериканцев, больных сифилисом. Эксперимент был поставлен для того, чтобы изучить естественное развитие указанного заболевания, передающегося половым путем, никакого лечения при этом не проводилось. Известие о таком чудовищном опыте на неинформированных о нем людях потрясло многих в США. Конгресс немедленно прекратил эксперимент и издал закон, запрещавший когда-либо впредь проведение подобных исследований.

Среди вопросов, адресуемых лицам, которые подавали ходатайство на разрешение экспериментов в области генной терапии соматических клеток, были следующие:

  • 1. Что представляет собой заболевание, которое предполагается лечить?
  • 2. Насколько оно серьезно?
  • 3. Существуют ли альтернативные методы лечения?
  • 4. Насколько опасно предполагаемое лечение для больных?
  • 5. Какова вероятность успеха лечения?
  • 6. Как будут отбираться больные для клинических испытаний?
  • 7. Будет ли этот отбор беспристрастным и репрезентативным?
  • 8. Как больные будут информироваться об испытаниях?
  • 9. Какого рода информацию следует им сообщать?
  • 10. Каким образом будет получено их согласие?
  • 11. Как будет гарантироваться конфиденциальность сведений о больных и проведении исследований?

Когда эксперименты в области генной терапии только начинались, большая часть заявок на клинические испытания вначале рассматривалась Комитетом по этике того учреждения, где предполагалось осуществлять исследования, и только потом они пересылались в Подкомитет по генной терапии человека. Последний оценивал заявки с точки зрения их научной и медицинской значимости, соответствия действующим правилам, убедительности доводов. Если заявка отклонялась, ее возвращали назад с необходимыми комментариями. Авторы заявки могли пересмотреть предложение и переработать его. Если заявка утверждалась, то Подкомитет по генной терапии обсуждал ее в публичных дискуссиях, используя те же самые критерии. После одобрения заявки на таком уровне директор Подкомитета утверждал ее и подписывал разрешение на клинические испытания, без которого они не могли быть начаты. В этом последнем случае особое внимание обращалось на способ получения продукта, методы качественного контроля его чистоты, а также на то, какие доклинические испытания были проведены, чтобы убедиться в безопасности продукта.

Но, поскольку число заявок со временем увеличивалось, а генная терапия становилась, по словам одного комментатора, "выигрышным билетом в медицине", принятая первоначально процедура утверждения заявок была признана неоправданно трудоемкой и избыточной. Соответственно после 1997 г. Подкомитет по генной терапии уже не входил в число учреждений, контролирующих исследования в области генной терапии человека. Если Подкомитет и будет существовать, то он, скорее всего, станет организатором форумов по обсуждению этических проблем, связанных с генной терапией человека. А пока требование, согласно которому все заявки в области генной терапии должны обсуждаться публично, снято. Учреждение, ответственное за контроль производства и использования биологических продуктов, проводит все необходимые оценки конфиденциально, чтобы гарантировать соблюдение права собственности разработчиков. В настоящее время генная терапия человека считается безопасной медицинской процедурой, хотя и не особенно эффективной. Высказывавшиеся ранее опасения рассеялись, и она стала одним из основных новых подходов к лечению заболеваний человека.

Большинство специалистов считают процедуру утверждения испытаний в области генной терапии соматических клеток человека в США вполне адекватной; она гарантирует беспристрастный отбор больных и их информированность, а также осуществление всех манипуляций должным образом, без причинения вреда, как конкретным больным, так и человеческой популяции в целом. В настоящее время в других странах тоже разрабатываются правила проведения испытаний в области генной терапии. В США это было сделано в результате тщательного взвешивания каждого предложения. Как сказал один из участников слушаний, организованных Подкомитетов по генной терапии в январе 1989 г., доктор Уолтере: "Я не знаю никакой другой биомедицинской науки или технологии, которая бы подвергалась столь всесторонней проверке, как генная терапия".

Накопление дефектных генов в будущих поколениях.

Существует мнение, что лечение генетических заболеваний с помощью генной терапии соматических клеток неизбежно приведет к ухудшению генофонда человеческой популяции. Оно основывается на представлении, что частота дефектного гена в популяции будет увеличиваться от поколения к поколению, поскольку генная терапия будет способствовать передаче мутантных генов следующему поколению от тех людей, которые до этого были неспособны произвести потомство или не могли дожить до половозрелого возраста. Однако эта гипотеза оказалась неверной. По данным популяционной генетики, для существенного повышения частоты вредного или летального гена в результате эффективного лечения требуются тысячи лет. Так, если какое-то редкое генетическое заболевание встречается у одного из 100 000 жизнеспособных новорожденных, то пройдет примерно 2000 лет после начала применения эффективной генной терапии, прежде чем частота указанного заболевания удвоится и составит 1 случай на 50 000.

Помимо того, что частота летального гена от поколения к поколению почти не повышается, в результате длительного лечения всех, кто в этом нуждается, генотип отдельных индивидуумов тоже остается неизменным. Это положение можно проиллюстрировать примером из истории эволюции. Приматы, в том числе и человек, неспособны синтезировать жизненно важный витамин С, они должны получать его из внешних источников. Таким образом, можно сказать, что мы все генетически дефектны по гену этого жизненно важного вещества. В противоположность этому амфибии, рептилии, птицы и млекопитающие, не относящиеся к приматам, синтезируют витамин С. И тем не менее генетический дефект, обусловливающий неспособность к биосинтезу витамина С, не "помешал" успешной эволюции приматов на протяжении более миллионов лет. Сходным образом, и коррекция других генетических дефектов не приведет к существенному накоплению "нездоровых" генов у будущих поколений.

Генная терапия клеток зародышевой линии.

Эксперименты в области генной терапии клеток зародышевой линии человека сейчас строго запрещены, однако приходится признать, что некоторые генетические заболевания можно вылечить только таким путем. Методология генной терапии клеток зародышевой линии человека разработана пока недостаточно. Однако не вызывает сомнения, что с развитием методов генетического манипулирования на животных и диагностического тестирования преимплантационных эмбрионов этот пробел будет восполнен. Более того, поскольку генная терапия соматических клеток становится все более рутинной процедурой, это скажется и на отношении людей к генной терапии клеток зародышевой линии человека, и через некоторое время возникнет необходимость ее тестирования. Остается только надеяться, что к тому времени все проблемы, связанные с последствиями практического применения генной терапии клеток зародышевой линии человека, в том числе социальное и биологическое, будут урегулированы.

Считается, что генная терапия человека может помочь в лечении серьезных заболеваний. Действительно, она способна обеспечить коррекцию ряда физических и психических нарушений, хотя остается неясным, сочтет ли общество приемлемым такое применение генной терапии. Подобно любому другому новому медицинскому направлению, генная терапия клеток зародышевой линии человека вызывает многочисленные вопросы, а именно:

  • 1. Какова стоимость разработки и внедрения методов генной терапии клеток зародышевой линии человека?
  • 2. Должно ли правительство устанавливать приоритеты медицинских исследований?
  • 3. Не приведет ли приоритетное развитие генной терапии клеток зародышевой линии к свертыванию работ по поиску других способов лечения?
  • 4. Удастся ли охватить всех больных, которые в этом нуждаются?
  • 5. Сможет ли физическое лицо или компания получить исключительные права на проведение лечения конкретных болезней с помощью генной терапии?

Клонирование человека.

Интерес общественности к возможности клонирования человека возник в 1960-х гг., после того как были проведены соответствующие эксперименты на лягушках и жабах. Эти исследования показали, что ядро оплодотворенной яйцеклетки можно заменить ядром недифференцированной клетки, и при этом эмбрион будет развиваться нормально. Таким образом, в принципе можно выделить ядра из недифференцированных клеток какого-либо организма, ввести их в оплодотворенные яйцеклетки того же самого организма и получить потомство с тем же генотипом, что и у родителя. Другими словами, каждый из организмов-потомков можно считать генетическим клоном исходного донорного организма. В 1960-е гг. казалось, что, несмотря на отсутствие технических возможностей, не составляет труда экстраполировать результаты клонирования лягушки на человека. В прессе появилось множество статей на эту тему, были даже написаны научно-фантастические произведения. Один из рассказов был посвящен клонированию вероломно убитого президента США Джона Ф. Кеннеди, однако более популярной темой было клонирование злодеев. Произведения о клонировании человека были не только неправдоподобными, но и пропагандировали ошибочную и весьма опасную идею, что личностные особенности, характер и другие качества человека обусловлены исключительно его генотипом. На самом же деле человек как личность формируется под влиянием, как своих генов, так и условий среды, в частности культурных традиций. Например, злостный расизм, который проповедовал Гитлер, -- приобретенное поведенческое качество, не определяемое каким-то одним геном или их комбинацией. В другой среде с иными культурными особенностями из "клонированного Гитлера" не обязательно сформировался бы человек, подобный реально существовавшему Гитлеру. Сходным образом, из "клона матери Терезы" не обязательно "получилась" бы женщина, посвятившая свою жизнь помощи бедным и больным в Калькутте.

По мере развития методов репродуктивной биологии млекопитающих и создания различных трансгенных животных становилось все более очевидным, что клонирование человека - дело не столь отдаленного будущего. Предположение стало реальностью в 1997 г., когда была клонирована овечка, названная Долли. Для этого использовалось ядро дифференцированной клетки донорной суягной овцы. Методический подход, который использовался при "создании" Долли, в принципе пригоден для получения клонов любых млекопитающих, в том числе и человека. И даже если он не оправдает себя применительно к млекопитающим других видов, по-видимому, не потребуется слишком много экспериментов, чтобы разработать подходящий метод. В результате клонирование человека тотчас станет предметом любой дискуссии, затрагивающей этические проблемы генетики и биологической медицины.

Без сомнения, клонирование человека - сложная и противоречивая проблема. Для одних сама мысль о создании копии уже существующего индивидуума путем экспериментальных манипуляций представляется неприемлемой. Другие считают, что клонированный индивидуум - это то же самое, что и однояйцовый близнец, несмотря на разницу в возрасте, и, следовательно, клонирование по своей природе не злонамеренно, хотя, возможно, не так уж необходимо. Клонирование может дать положительный медицинский и социальный эффект, оправдывающий его проведение в исключительных случаях. Например, оно может оказаться жизненно важным для родителей больного ребенка. Ответственность за опыты по клонированию человека во многих странах регулируется законодательно, причем все исследования, связанные с клонированием человека, запрещены. Таких ограничений достаточно, чтобы исключить возможность клонирования людей. Однако вопрос о неизбежности клонирования человека обязательно возникнет.

Загрузка...