Медицинский портал. Щитовидная железа, Рак, диагностика

Процессы полимеризации и поликонденсации (6 мин.). Реакция полимеризации и поликонденсации Дать определение реакциям полимеризации и поликонденсации

Реакции полимеризации

Полимеризация - реакция образования полимера без образования низкомолекулярных продуктов. В качестве мономера используется молекула, содержащая кратную связь. При полимеризации этилена роль бифункциональной структурной единицы играет двойная связь, которая под влиянием инициатора (например, органического пероксида перикиси бензолоила (C 6 H 5 COO) 2), легко переходит в радикальное состояние R ; присоединение радикала создает условия для роста цепи

Для реакции полимеризации характерны три стадии: инициирование, рост цепи и обрыв цепи:

обрыв цепи

полимер электротехническая медь

Этот тип полимеризации называется радикальным.

Полимеризация может инициироваться катионами или анионами (ионами). Ионная полимеризация включает те же стадии (инициирование, рост цепи, обрыв цепи). Инициаторами катионной полимеризации могут быть H+, неорганические апротонные кислоты SnCl 4 , AlCl 3 , металлоорганические соединения Al(C 2 H 5) 3 . Инициаторами анионной полимеризации обычно служат электронодонорные соединения (щелочные металлы, их алкоголяты и т. д.).

Катионная полимеризация:

Полимеризация может осуществляться между разными мономерами. Такие соединения называют сополимерами. В табл. 1 приведены примеры полимеров и сополимеров, получаемых реакцией полимеризации.

Таблица 1 Важнейшие полимеры и сополимеры

Реакции сополимеризации

Рассмотрим особенности процесса радикальной сополимеризации. В случае сополимеризации молекул А и В с образованием радикалов, центрированных на молекулах А или В растущей цепи, должны иметь место 4 стадии роста цепи:

Итак, в случае радикальной полимеризации мы имеем дело с распределением продуктов по молекулярным массам и многомаршрутный процесс с бесконечно большим числом маршрутов. Продукты реакции P i образуются в стадиях роста при передаче цепи на мономер.

Второй путь образования продуктов (полимерных молекул) - стадии обрыва цепи на X i и X j .

Реакции поликонденсации

В общем виде схема основной реакции поликонденсации-роста цепи - может быть представлена следующим, образом.:

(n и m-любое целое число, включая единицу, X и Y-исходные функциональные группы, А - низкомолекулярный продукт поликонденсации). При этом взаимодействие мономеров друг с другом или с образовавшимися олигомерами и последних между собой подчиняется практически одним и тем же законам.

Поскольку при поликонденсации мономеры исчерпываются уже при невысоких степенях завершенности реакции, рост цепи высокомолекулярного полимера происходит преим. в результате многократного соединения между собой олигомерных или полимерных молекул по концевым функциональным группам (принцип многократного удвоения), при этом число молекул в системе уменьшается (в этом ступенчатый характер поликонденсации). Уменьшается в ходе поликонденсации и количество исходных функциональных групп - реакционных (активных) центров, хотя в ряде случаев образующиеся при поликонденсации связи реагируют как между собой, так и с исходными реакционными центрами. Росту полимерной цепи при равновесной поликонденсации сопутствует обратная реакция полимера с выделяющимся низкомолекулярным продуктом, что ограничивает молекулярную массу полимера.

Поликонденсация сопровождается образованием полимера и низкомолекулярного соединения (H 2 O, HCl, NH 3 и т. п.). Мономеры должны содержать минимум две функциональные группы.

Типичная реакция поликонденсации лежит в основе получения фенолформальдегидных смол

Полимеры – это высокомолекулярные соединения (вмс). Мономеры – это низкомолекулярные вещества, из которых получают полимеры. Степенью полимеризации (поликонденсации) называют среднее число структурных звеньев в молекуле полимера.

Полимеризация – реакция соединения молекул мономера т, не сопровождающаяся выделением побочных продуктов. Поэтому элементарный состав мономеров и получаемого полимера одинаков. Полимеризация может осуществляться путем раскрытия двойных и тройных связей ненасыщенных соединений, а также за счет размыкания различных гетероциклов. В зависимости от характера активных центров, инициирующих цепной процесс различают радикальную и ионную полимеризацию. Процесс идет по цепному механизму.

nCH2=CH2→(-СН-СН-)n, где n - это степень полимеризации молекул, показывающая, сколько мономерных звеньев входит в ее состав.

Классификация полимеров :

Если брать за основу качественный состав молекул, то все рассматриваемые вещества можно определить в три группы.

    Органические – это те, в состав которых входят атомы углерода, водорода, серы, кислорода, фосфора, азота. То есть те элементы, которые являются биогенными. Примеров можно привести массу: полиэтилен, поливинилхлорид, полипропилен, вискоза, нейлон, природный полимер – белок, нуклеиновые кислоты и так далее.

    Элементорганические – такие, в состав которых входит какой-то посторонний неорганический и не биогенный элемент. Чаще всего это кремний, алюминий или титан. Примеры подобных макромолекул: органическое стекло, стеклополимеры, композиционные материалы.

    Неорганические – в основе цепи лежат атомы кремния, а не углерода. Радикалы же могут быть частью боковых ответвлений. Они открыты совсем недавно, в середине XX века. Используются в медицине, строительстве, технике и прочих отраслях. Примеры: силикон, киноварь.

Если разделять полимеры по происхождению, то можно выделить три их группы.

    Природные полимеры, применение которых широко осуществлялось с самой древности. Это такие макромолекулы, для создания которых человек не прилагал никаких усилий. Они являются продуктами реакций самой природы. Примеры: шелк, шерсть, белок, нуклеиновые кислоты, крахмал, целлюлоза, кожа, хлопок и прочие.

    Искусственные. Это такие макромолекулы, которые создаются человеком, но на основе природных аналогов. То есть просто улучшаются и изменяются свойства уже имеющегося природного полимера. Примеры: искусственный каучук, резина.

    Синтетические – это такие полимеры, в создании которых участвует только человек. Природных аналогов для них нет. Ученые разрабатывают методы синтеза новых материалов, которые отличались бы улучшенными техническими характеристиками. Так рождаются синтетические полимерные соединения разного рода. Примеры: полиэтилен, полипропилен, вискоза, ацетатное волокно и прочее.

Поликонденсация – реакция образования высокомолекулярных соединений, протекающая по механизму замещения и сопровождающаяся обычно, выделением низкомолекулярных продуктов, вследствие чего элементарный состав полимера отличается от элементарного состава исходных продуктов.

В реакцию поликонденсации могут вступать мономерсодержащие двух или более функциональные группы. При взаимодействии этих групп происходит разложение молекулы низкомолекулярного соединения, с образованием новой группы, которая связывает остатки реагирующих молекул.

Поликонденсация - ступенчатая реакция, рост цепи происходит в результате взаимодействия молекул мономера друг с другом, а также промежуточными продуктами: олигомерными или полимерными молекулами или при взаимодействии олигомерных и полимерных молекул между собой. В результате образуются соединения с функциональностью исходного вещества.

Процессы полимеризации и поликонденсации имеют важное значение в промышленности органического синтеза. При их проведении получают высокомолекулярные вещества ─ полимеры ─ которые впоследствии используются для получения пластмасс, химических волокон, синтетических каучуков, лакокрасочной продукции, различных клеев и других синтетических материалов.

Полимеризацией называется реакция получения макромолекул, протекающая за счет разрыва кратных связей мономера, без выделения побочных продуктов.

nCH 2 = CH 2 → (──CH 2 ─CH 2 ──) n + Q

этилен полиэтилен

Исходными веществами для реакций полимеризации являются ненасыщенные соединения, имеющие двойные или тройные связи (этилен, ацетилен, стирол, винилхлорид, бутадиен и их производные) а также вещества, имеющие подвижные атомы, которые легко замешаются атомами других веществ. Возможность получения полимера обусловливается разрывом двойной связи, в результате чего молекула мономера реагирует с другими молекулами.

Процесс полимеризации проводят с использованием инициаторов или катализаторов. В присутствии инициаторов процесс протекает по радикальному механизму (через образование свободных радикалов), при использовании катализаторов ─ по ионному механизму (через образование ионов).

Поликонденсацией называется процесс образования полимеров, при котором взаимодействие молекул мономеров сопровождается выделением побочных низкомолекулярных соединений (воды, спирта, хлористого водорода). Например, лавсан получают при поликонденсации терефталевой кислоты и этиленгликоля:

nHOOC-C 6 H 4 -COOH + n HO-CH 2 -CH 2 -OH → (─OC-C 6 H 4 -CO-O-CH 2 -CH 2 -O─) n + 2n H 2 O + Q

Исходными веществами для реакций поликонденсации являются вещества, содержащие реакционноспособные (функциональные) группы (гидроксильные, карбоксильные аминогруппы и др.). Эти реакции, как правило, проводятся в присутствии инициаторов или катализаторов.

По химической сущности процессы полимеризации и поликонденсации отличаются друг от друга, однако условия их проведения одинаковы. Существуют три основных способа проведения процессов полимеризации (поликонденсации): блочный, эмульсионный и в растворе.

Блочная полимеризация перетекает в массе чистого мономера. Для проведения процесса требуются сравнительно невысокие температуры (от 200 до 370 0 С). С целью зарождения цепи процесс, как правило, проводят в присутствии инициатора.

Эмульсионной полимеризацией получают поливинилхлорид (латексная полимеризация), полиэтилен

низкого давления (суспензионная полимеризация), полистирол (латексный и суспензионный) и др. Реакторы-полимеризаторы для промышленного проведения латексной и суспензионной полимеризации чаще применяются емкостного типа, но могут быть и колонного типа.


Недостатки эмульсионной полимеризации ─ загрязнение полимера эмульгаторами, которые ухудшают свойства получаемого продукта.

Полимеризация в растворе проводится в среде растворителя, растворяющего мономер и полимер или только мономер. В первом случае продукт полимеризации представляет собой раствор полимера в виде лака, поэтому этот способ часто используют в лакокрасочной промышленности. Если полимер не растворяется, то по мере образования он вБлочный способ полимеризации используется в тех случаях, когда нужно получить полимер, не загрязненный примесями. В частности, таким способом получают полистирол, полиэтилен высокого давления, поликапролактам и др. Для осуществления блочной полимеризации при использовании непрерывных процессов применяют реакторы колонного типа и змеевиковые с обеспечением позонного температурного режима.

Эмульсионная полимеризация осуществляется в водной среде или в среде углеводородного растворителя, не способного растворять полимеризуемый мономер. Жидкий мономер распределяется в воде в виде мельчайших капелек, образуя эмульсию. Чтобы капельки мономера не сливались одна с другой, в воду добавляют различные эмульгаторы и эмульсию энергично перемешивают. В качестве эмульгаторов используют различные мыла, желатины, высшие спирты. Добавляемый эмульгатор обеспечивает лучшее диспергирование мономера, что обусловливает высокую скорость процесса. Кроме этого, эмульгатор снижает поверхностное натяжение на границе мономер─вода. Эмульсииыделяется из раствора в твердом виде (получается суспензия). Осадок полимера отделяют от растворителя фильтрацией, промывкой и сушкой.

При полимеризации в растворах получают более однородные полимеры (по сравнению с другими способами), но с меньшим молекулярным весом, так как цепи под действием молекул растворителя быстро обрываются.

Общая характеристика пожарной опасности процессов полимеризации и поликонденсации:

1. Пожарная опасность процессов полимеризации и поликонденсации связана, прежде всего, с тем, что в качестве мономеров используются легковоспламеняющиеся и горючие жидкости (стирол, хлоропрен, изопрен, изопентан), горючие газы (этилен, пропилен), в том числе и сжиженные (бутадиен, хлористый винил), горючие твердые вещества (капролактам, фенол, диметилтерефталат) и др.

Инициаторами процессов полимеризации являются органические перекиси и гидроперекиси (перекись бензоила, перекись водорода, гидроперекись изопропилбензола, персульфаты). В качестве катализаторов используют металлоорганические соединения (три- и диэтилалюминийхлорид, триизобутилалюминий) ─ вещества, обладающие большой химической активностью, самовоспламеняющиеся на воздухе, при контакте с водой и веществами, содержащими группу ОН. Катализаторами бывают и щелочные металлы (Nа, Li), самовоспламеняющиеся при контакте с водой.

Для нагрева в некоторых случаях используют органические теплоносители.

2. Процессы полимеризации очень чувствительны к повышенным температурам. Повышение температурного режима в результате увеличения скорости химической реакции полимеризации приводит к росту давления и авариям. Следовательно, при работе реакторов необходимо поддержание постоянного температурного режима.

3. При проведении процессов полимеризации и поликонденсации технологические коммуникации могут засоряться полимерными отложениями, что зачастую приводит к значительному повышению давления в полимеризаторе.

Коммуникации, продолжительное время соприкасающиеся с мономером, а также поверхность предохранительных клапанов и вентилей ручного стравливания с целью защиты от отложений полимеров необходимо смазывать ингибитором процесса полимеризации.

4. Повышенное давление в реакторах может наблюдаться при нарушении нормального отвода побочного продукта, образующегося в процессе поликонденсации.

5. При полимеризации в присутствии металлоорганических катализаторов нарушение температурного режима и давления может наблюдаться в случае попадания в реактор влаги или кислорода. Поэтому исходные вещества и азот предварительно осушаются. Кроме того, осуществляют контроль за содержанием свободного кислорода в сырье и азоте, которое не должно превышать норму, установленную технологическим регламентом.

6. Внутренняя поверхность реакторов и соединенных с ними трубопроводов может подвергаться химической коррозии.

7. Использование мешалок связано с возможность выхода горючих веществ наружу через неплотности. Поэтому возникает необходимость обеспечения надежной герметичности мест выхода из аппаратов валов мешалок и устройства местных отсосов.

8. В периоды вывода установок из эксплуатации возможно самовозгорание отложений термополимеров.

9. Применяемые в процессах полимеризации углеводородные растворители и многие мономеры являются хорошими диэлектриками, при движении которых образуется статическое электричество. Это вызывает необходимость тщательного заземления аппаратов и трубопроводов.

10. Источники зажигания могут возникнуть при неисправности и несоответствии электроприводов к мешалкам, а также электроподогревателей реакционной среды.


Полимеры
– это высокомолекулярные соединения (вмс). Мономеры – это низкомолекулярные вещества, из которых получают полимеры.

Степенью полимеризации (поликонденсации) называют среднее число структурных звеньев в молекуле полимера.

Повторяющийся участок структуры молекулы полимера называют структурным звеном.

Природные органические ВМС – целлюлоза, белки, крахмал, натуральный каучук;

неорганические – графит, силикаты.

Искусственные ВМС получают из природных ВМС, используя химические методы, которые

не изменяют главную цепь (ацетил-целлюлоза, нитроцеллюлоза, резина).

Синтетические ВМС получают при помощи реакций полимеризации и поликонденсации низкомолекулярных веществ (полиэтилен, полистирол, поливинилхлорид, капрон, лавсан, каучуки)

Синтез полимеров из мономеров основан на реакциях двух типов: полимеризации и поликонденсации .

Кроме того, следует отметить, что некоторые полимеры получают не из мономеров, а из других полимеров, используя химические превращения макромолекул (например, при действии азотной кислоты на природный полимер целлюлозу получают новый полимер — нитрат целлюлозы).

Полимеризация

Мономерами в полимеризации могут быть вещества, способные вступать в реакции присоединения .

Это непредельные соединения , содержащие двойные или тройные связи,

а также некоторые вещества циклического строения .

Характерные признаки полимеризации

1. В основе полимеризации лежит реакция присоединения

2. Полимеризация является цепным процессом, т.к. включает стадии инициирования, роста и обрыва цепи.

3. Элементный состав (молекулярные формулы) мономера и полимера одинаков .

Пoликонденсация

Пoликонденсация — процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов.

Например, получение капрона из e-аминокапроновой кислоты:

n H 2 N-(CH 2) 5 -COOH → H-[-NH-(CH 2) 5 -CO-] n -OH + (n-1) H 2 O ;

или лавсана из терефталевой кислоты и этиленгликоля:

n HOOC-C 6 H 4 -COOH + n HO-CH 2 CH 2 -OH → HO-(-CO-C 6 H 4 -CO-O-CH 2 CH 2 -O-) n -H + (n-1) H 2 O

Мономеры, способные к поликонденсации

В поликонденсацию могут вступать соединения, содержащие не менее двух функциональных групп, способных к химическому взаимодействию.

Например, соединение с двумя разнородными функциональными группами:

  • аминокислоты H 2 N — R — COOH → полиамиды
  • оксикислоты HO — R — COOH → полиэфиры;

или два соединения, каждое из которых содержит одинаковые функциональные группы, способные взаимодействовать с группами другой молекулы:

  • двухатомные спирты и двухосновные (дикарбоновые) кислоты:

HO-R-OH + HOOC-R`-COOH → полиэфиры.

  • диамины и двухосновные кислоты:

H 2 N-R-NH 2 + HOOC-R`-COOH → полиамиды.

Полимеры.

Полимеры (греч. πολύ- - много; μέρος - часть) - это сложные вещества, молекулы которых построены из множества повторяющихся элементарных звеньев – мономеров .


Полимеры являются высокомолекулярными соединениями с большими молекулярными весами (порядка сотен, тысяч и миллионов).


Следующие два процесса приводят к Образованию высокомолекулярных соединений:


1. Реакция полимеризации,

2. Реакция поликонденсации.

Реакция полимеризации

Реакция полимеризации – процесс, в результате которого молекулы низкомолекулярного соединения (мономера ) соединяются друг с другом, образуя новое вещество (полимер ), молекулярный вес которого в целое число раз больше, чем у мономера.


Полимеризация , главным образом, характерна для соединений с кратными связями (двойной или тройной). Кратные связи в ходе реакции полимеризации преобразуются в простые (одинарные). Высвободившиеся в результате этого преобразования валентные электроны идут на установление ковалентных связей между мономерами.


Примером реакции полимеризации может служить образование полиэтилена из этилена:



Или в общем виде:



Характерной чертой этой реакции является то, что в результате образуется только вещество полимера и никаких побочных веществ, при этом, не выделяется . Этим объясняется кратность весов полимера и исходных мономеров.

Реакция поликонденсации

Реакция поликонденсации – процесс образования полимера из низкомолекулярных соединений (мономеров).


Но в данном случае мономеры содержат две или несколько функциональных групп, которые в ходе реакции теряют свои атомы, из которых образуются другие вещества (вода, аммиак, галогеноводороды и т.д.).


Таким образом, состав элементарного звена полимера отличается от состава исходного мономера, а в ходе реакции поликонденсации мы получаем не только сам полимер, но и другие вещества .


Пример реакции поликонденсации – образование капрона из аминокапроновой кислоты :



В ходе этой реакции аминогруппа (-NH 2 ) теряет один атом водорода, а карбоксильная группа (-СООН ) лишается входящей в неё гидроксильной группы (-ОН ). Отделившиеся от мономеров ионы образуют молекулу воды.

Природные полимеры

Примерами природных высокомолекулярных соединений (полимеров) могут служить полисахариды крахмал и целлюлоза , построенные из элементарных звеньев, являющихся остатками моносахарида (глюкозы ).


Кожа, шерсть, хлопок, шелк – всё это природные полимеры.



Крахмал образуется в результате фотосинтеза, в листьях растений, и запасается в клубнях, корнях, зёрнах.


Крахмал – белый (под микроскопом зернистый) порошок, нерастворимый в холодной воде, в горячей - набухает, образуя коллоидный раствор (крахмальный клейстер).


Крахмал представляет собой смесь двух полисахаридов, построенных из амилозы (10-20%) и амилопектина (80-90%).


Гликоген


Гликоген – полимер, в основе которого лежит мономер мальтоза.


В животных организмах гликоген является структурным и функциональным аналогом растительного крахмала.


Гликоген является основной формой хранения глюкозы в животных клетках.


Гликоген образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы.


По строению гликоген подобен амилопектину , но имеет ещё большее разветвление цепей.



(или клетчатка) – наиболее распространённый растительный полисахарид. Она обладает большой механической прочностью и выполняет роль опорного материала растений.


Наиболее чистая природная целлюлоза – хлопковое волокно – содержит 85-90% целлюлозы. В древесине хвойных деревьев целлюлозы содержится около 50%.



Белки – полимеры, элементарные звенья которых представляют собой остатки аминокислот.


Десятки, сотни и тысячи молекул аминокислот, образующих гигантские молекулы белков, соединяются друг с другом, выделяя воду за счёт карбоксильных и аминогрупп. Структуру такой молекулы можно представить так:



Белки – природные высокомолекулярные азотосодержащие органические соединения. Они играют первостепенную роль во всех жизненных процессах, являются носителями жизни. Белки содержатся во всех тканях организмов, в крови, в костях.


Белки содержатся во всех тканях организмов, в крови, в костях. Энзимы (ферменты), многие гормоны представляют собой сложные белки.


Белок , так же как углеводы и жиры, - важнейшая необходимая часть пищи.


Природный каучук


Натуральный (природный) каучук – полимер на основе мономера изопрена .

Природный каучук содержится в млечном соке каучуконосных растений, главным образом, тропических (например, бразильского дерева гевея).


Другой природный продукт – гуттаперча – также является полимером изопрена, но с иной конфигурацией молекул.


Сырой каучук липок непрочен, а при небольшом понижении температуры становится хрупким.


Чтобы придать изготовленным из каучука изделиям необходимую прочность и эластичность, каучук подвергают вулканизации – вводят в него серу и затем нагревают. Вулканизированный каучук называется резиной .

Синтетические полимеры

Синтетические полимеры - это разнообразные материалы, обычно получаемые из дешёвого и доступного сырья. На их основе получают пластические массы (пластмассы), искусственные и синтетические волокна и пр.


Пластмассы – сложные композиции, в которые вводят различные наполнители и добавки, придающие полимерам необходимый комплекс технических свойств.


Полимеры и пластмассы на их основе, являются ценными заменителями многих природных материалов (металла, дерева, кожи, клеев и т.д.).


Синтетические волокна успешно заменяют натуральные – шёлковые, шерстяные, хлопчатобумажные.


При этом важно подчеркнуть, что по ряду свойств материалы на основе синтетических полимеров часто превосходят природные. Можно получать пластмассы, волокна и другие соединения с комплексом заданных технических свойств. Это позволяет решать многие задачи современной техники, которые не могли быть решены при использовании только природных материалов.

Полимеризационные смолы

К полимеризационным смолам относят полимеры, получаемые реакцией полимеризации преимущественно этиленовых углеводородов или их производных.

Примеры полимеризационных смол: полиэтилен, полипропилен, полистирол, поливинилхлорид и пр.


Полиэтилен.


Полиэтилен – полимер, образующийся при полимеризации этилена.



Или сокращённо:



Полиэтилен – предельный углеводород с молекулярным весом от 10000 до 400000. Он представляет собой бесцветный полупрозрачный в тонких слоях и белый в толстых слоях. Полиэтилен - воскообразный, но твёрдый материал с температурой плавления 110-125 градусов С. Обладает высокой химической стойкостью и водонепроницаемостью, малой газопроницаемостью.


Его применяют в качестве электроизоляционного материала, а также для изготовления плёнок, используемых в качестве упаковочного материала, посуды, шлангов и т.д.


Свойства полиэтилена зависят от способа его получения. Полиэтилен высокого давления обладает меньшей плотностью и меньшим молекулярным весом (10000- 45000), чем полиэтилен низкого давления (молекулярный вес 70000- 400000), что сказывается на технических свойствах.


Для контакта с пищевыми продуктами допускается только полиэтилен высокого давления, так как полиэтилен низкого давления может содержать остатки катализаторов – вредные для здоровья человека соединения тяжёлых металлов.


Полипропилен.


Полипропилен – полимер пропилена, следующего за этиленом гомолога непредельных этиленовых углеводородов.


По внешнему виду это каучукоподобная масса, более или менее твёрдая и упругая.


Отличается от полиэтилена более высокой температурой плавления.


Полипропилен используют для электроизоляции, для изготовления защитных плёнок, труб шлангов, шестерён, деталей приборов, высокопрочного и химически стойкого волокна. Последнее применяют в производстве канатов, рыболовных сетей и т.д.


Плёнки из полипропилена значительно прозрачнее и прочнее полиэтиленовых. Пищевые продукты в упаковке из полипропилена можно подвергать температурной обработке (варке и разогреванию и пр.).


Полистирол


Полистирол образуется при полимеризации стирола:


Он может быть получен в виде прозрачной стеклообразной массы.


Применяется как органическое стекло, для изготовления промышленных товаров (пуговиц, гребней и т.п.).


Искусственный каучук


Отсутствие в нашей стране природного каучука вызвало необходимость в разработке искусственного метода получения этого важнейшего материала. Советскими химиками был найден и впервые в мире осуществлён (1928-1930) в прмышленном маштабе способ получения синтетического каучука.


Исходным материалом для производства синтетического каучука служит непредельный углеводород бутадиен или дивинил, который полимеризуется подобно изопрену.


Исходный бутадиен получают из этилового спирта или бутана, попутного нефтяного газа.

Конденсационные смолы

К конденсационным смолам относят полимеры, получаемые реакцией поликонденсации. Например:

  • фенолформальдегидные смолы,
  • полиэфирные смолы,
  • полиамидные смолы и т.д.

Фенолформальдегидные смолы


Эти высокомолекулярные соединения образуются в результате взаимодействия фенола (С 6 Н 5 ОН ) с формальдегидом (СН 2 =О ) в присутствии кислот или щелочей в качестве катализаторов.



Фенолформальдегидные смолы обладают замечательным свойством: при нагревании они вначале размягчаются, а при дальнейшем нагревании затвердевают.


Из этих смол готовят ценные пластмассы – фенолопласты . Смолы смешивают с различными наполнителями (древесной мукой, измельчённой бумагой, асбестом, графитом и т.д.), с пластификаторами, красителями и из полученной массы изготавливают методом горячего прессования различные изделия.


Полиэфирные смолы


Примером таких смол может служить продукт поликонденсации двухосновной ароматической терефталевой кислоты с двухатомным спиртом этиленгликолем .


В результате получается полиэтилентерефталат – полимер, в молекулах которого многократно повторяется группировка сложного эфира.


В нашей стране эту смолу выпускают под названием лавсан (за рубежём – терилен, дакрон).


Из неё изготавливают волокно, напоминающее шерсть, но значительно более прочное, дающее несминаемые ткани.


Лавсан обладает высокой термо-, влаго-, и свтостойкостью, устойчив к действию щелочей, кислот и окислителей.


Полиамидные смолы


Полимеры этого типа являются синтетическими аналогами белков. В их цепях имеются такие же, как в белках, многократно повторяющиеся амидные –СО–NH– группы. В цепях молекул белков они разделены звеном из одного С -атома, в синтетических полиамидах – цепочкой из четырёх и более С -атомов.


Волокна, полученные из синтетических смол, - капрон , энант и анид – по некоторым свойствам значительно превышают натуральный шёлк.


Из них вырабатывают красивые, прочные ткани и трикотаж. В технике используют изготовленные из капрона или анида верёвки, канаты, отличающиеся высокой прочностью. Эти полимеры применяют также в качестве основы автомобильных шин, для изготовления сетей, различных технических изделий.


Капрон является поликонденсатом аминокапроновой кислоты , содержащей цепь из шести атомов углерода:


Энант – поликонденсат аминоэнантовой кислоты, содержащий цепь из семи атомов углерода.


Анид (найлон и перлон ) получается поликонденсацией двухосновной адипиновой кислоты НООС-(СН 2) 4 -СООН и гексаметилендиамина NН 2 -(СН 2) 6 - NН 2 .

Загрузка...