Медицинский портал. Щитовидная железа, Рак, диагностика

Арифметические действия над рациональными числами. Уроки по математике на тему "Сравнение дробей


























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: урок обобщения и систематизации знаний с применением компьютерных технологий.

Цели урока:

  • Образовательные :
    • совершенствовать навыки решения примеров и уравнений по теме «Свойства действий с рациональными числами»;
    • закрепить умения выполнять арифметические действия над рациональными числами;
    • проверить умение использовать свойства арифметических действий для упрощения выражений с рациональными числами;
    • обобщить и систематизировать теоретический материал.
  • Развивающие :
    • развивать навыки устного счёта;
    • развивать логическое мышление;
    • формировать умения чётко и ясно излагать свои мысли;
    • развивать математическую речь учащихся в процессе выполнения устной работы по воспроизведению теоретического материала;
    • расширить кругозор учащихся.
  • Воспитательные :
    • воспитывать умение работать с имеющейся информацией;
    • воспитывать уважение к предмету;
    • воспитывать умение слушать своего товарища, чувство взаимопомощи и взаимоподдержки;
    • способствовать воспитанию самоконтроля и взаимоконтроля учащихся.

Оборудование и наглядность: компьютер, мультимедийный проектор, экран, интерактивная презентация, сигнальные карточки для устного счета, цветные мелки.

Структура урока:

ХОД УРОКА

I. Организационный момент

II. Сообщение темы и целей урока

Проверка готовности учащихся к уроку. Сообщение учащимся целей и плана урока.

– Тема нашего урока: «Свойства действий с рациональными числами», а девиз урока я прошу вас прочитать хором:

Да, путь познания не гладок.
Но знаем мы со школьных лет,
Загадок больше, чем разгадок,
И поискам предела нет!

И сегодня мы с вами на уроке дружно и активно создадим математическую газету. Я – буду главным редактором, а вы – корректорами. Как вы понимаете значение этого слова?
Чтобы проверить других, нам необходимо систематизировать свои знания по теме «Свойства действий с рациональными числами».

А газета наша называется «Рациональные числа». А в переводе на татарский язык?
Я слышала, что вы хорошо знаете и английский язык, а как англичане назовут эту газету?
Представляю вам макет газеты, которая состоит из следующих рубрик: чтение хором: «Спрашивают – отвечаем », «Новости дня », «Аукцион проектов », «Актуальный репортаж », «А знаете ли вы…?» .

III. Актуализация опорных знаний

Устная работа:

В первой рубрике «Спрашивают – отвечаем» нам нужно проверить правильность информации, которую нам прислали в письмах наши корреспонденты. Посмотрите внимательно и скажите, какие правила нам нужно вспомнить, чтобы проверить эту информацию.

1.Правило сложения отрицательных чисел:

«Чтобы сложить два отрицательных числа, надо: 1) сложить их модули, 2) поставить перед полученным числом знак минус».

2. Правило деления чисел с разными знаками:

«При делении чисел с разными знаками, надо: 1) разделить модуль делимого на модуль делителя, 2) поставить перед полученным числом знак минус».

3. Правило умножения двух отрицательных чисел:

«Чтобы перемножить два отрицательных числа, надо перемножить их модули».

4. Правило умножения чисел с разными знаками:

«Чтобы перемножить два числа с разными знаками, надо перемножить модули этих чисел и поставить перед полученным числом знак минус».

5. Правило деления отрицательного числа на отрицательное число:

«Чтобы разделить отрицательное число на отрицательное число, надо разделить модуль делимого на модуль делителя».

6. Правило сложения чисел с разными знаками:

«Чтобы сложить два числа с разными знаками, надо 1) из большего модуля слагаемых вычесть меньший, 2) поставить перед полученным числом знак того слагаемого, модуль которого больше.

1) – 8,4 + (– 8,4) = 0; (– 16,8)
2) (– 6,7) . (– 10) = – 67; (67)
3) (– 2,2) + 3,5 = 1,3;
4) – 13 – 8 = – 5; (– 21)
5) 15 – 18 = – 13; (– 3)
6) 7,4 – (– 3,2) = – 10,6; (10,6)
7) – 9 . 6 = – 54;
8) – 3,6 . 1 = –1; (– 3,6)
9) – 18: (– 0,3) = 60;
10) – 3,7 . 0 = – 3,7. (0)

– Молодцы, хорошо справились.

IV. Закрепление пройденного материала

– А сейчас мы переходим к рубрике «Новости дня ». Чтобы заполнить эту рубрику, нам необходимо систематизировать знания о числах.
– Какие вы знаете числа? (Натуральные, дробные, рациональные)
– А какие числа относятся к рациональным? (Положительные, отрицательные и 0)
– А какие свойства рациональных чисел вы знаете? (Переместительное, сочетательное и распределительное, умножение на 1, умножение на 0)
– А теперь перейдем к письменной работе. Открыли тетради, записали число, классная работа, тема «Свойства действий с рациональными числами».
Используя эти свойства, упростим выражения:

А) х + 32 – 16 = х + 16
Б) – х – 18 – 23 = – х – 41
В) – 1,5 + х – 20 = – 21,5 + х
Г) 12 – 26 + х = х – 14
Д) 1,7 + 3,6 – х = 5,3 – х
Е) – х + а + 6,1 – а + 2,8 – 8,8 = – х + 0,1

– А следующие примеры требуют от нас еще более рационального решения с объяснением.

– 98 + 85 + 45 – 55 – 28 + 63 = 12
– 6,56 + 2,4 – 3,2 + 6,56 + 4 + 3,2 – 2,4 = 4
– 19,61 * 20 + 19,61 * 120 = 1961

12.04.1961 – Вам о чем-нибудь говорят полученные ответы?
50 лет назад 12 апреля 1961 года Юрий Гагарин полетел в космос. Город Заинск тоже имеет свою космическую историю: 9 марта 1961 года спускаемый аппарат №1 космического корабля «ВОСТОК-4» совершил мягкую посадку в районе села Старый Токмак Заинского района с манекеном человека, собакой и другими мелкими животными на борту. И в честь этого события в нашем районе поставят памятник. Сейчас в городе работает конкурсная комиссия. В конкурсе участвуют 3 проекта, они перед вами на экране. А сейчас мы с вами проведем аукцион проектов.
Я прошу проголосовать за понравившийся вам проект. Ваш голос может оказаться решающим.

V. Физкультминутка

– Свое мнение вы выражаете аплодисментами и топаньем. Давайте прорепетируем! Три хлопка и три притопа.
– Еще раз попробуем. Итак, голосование начинается:

– Отдаем свои голоса за Макет №1
– Отдаем свои голоса за Макет №2
– Отдаем свои голоса за Макет №3
– А теперь за все макеты вместе.
– Победу одержал Макет № ... Спасибо, я записала ваши голоса (поднимает сотовый телефон и показывает детям) и передам в счетную комиссию.
– Молодцы, спасибо. А впереди не менее важный – Актуальный репортаж.

VI. Подготовка к ГИА

В рубрику «Актуальный репортаж» пришло письмо, где ученик просит помочь ему в решении заданий к итоговому экзамену в 9 классе. Нам нужно каждому самостоятельно прорешать задания, тесты <Приложение 1 > у вас на столах:

1. Решить уравнения:

а) (х + 3)(х – 6) = 0

1) х = 3, х = – 6
2) х = – 3, х = – 6
3) х = – 3, х = 6

То а + b = b + a, а+(b + с) = (а + b) + с.

Прибавление нуля не изменяет числа, а сумма противоположных чисел равна нулю.

Значит, для любого рационального числа имеем: а + 0 = а, а + (- а)=0.

Умножение рациональных чисел тоже обладает переместительным и сочетательным свойствами. Другими словами, если а, b и с - любые рациональные числа, то ab - ba, a(bc) - (ab)c.

Умножение на 1 не изменяет рационального числа, а произведение числа на обратное ему число равно 1.

Значит, для любого рационального числа а имеем:

а) x + 8 - х - 22; в) a-m + 7-8+m;
б) -х-а + 12+а -12; г) 6,1 -k + 2,8 + p - 8,8 + k - р.

1190. Выбрав удобный порядок вычислений, найдите значение выражения:

1191. Сформулируйте словами переместительное свойство умножения ab = ba и проверьте его при:

1192. Сформулируйте словами сочетательное свойство умножения a(bc)=(ab)c и проверьте его при:

1193. Выбирая удобный порядок вычислений, найдите значение выражения:


1194. Какое получится число (положительное или отрицательное), если перемножить:

а) одно отрицательное число и два положительных числа;
б) два отрицательных и одно положительное число;
в) 7 отрицательных и несколько положительных чисел;
г) 20 отрицательных и несколько положительных? Сделайте вывод.

1195. Определите знак произведения:

а) - 2 (- 3) (- 9) (-1,3) 14 (- 2,7) (- 2,9);
б) 4 (-11) (-12) (-13) (-15) (-17) 80 90.

а) В спортивном зале собрались Витя, Коля, Петя, Сережа и Максим (рис. 91, а). Оказалось, что каждый из мальчиков знаком только с двумя другими. Кто с кем знаком? (Ребро графа означает «мы знакомы».)

б) Во дворе гуляют братья и сестры одной семьи. Кто из этих детей мальчики, а кто девочки (рис. 91, б)? (Пунктирные ребра графа означают - "я - сестра", а сплошные - "я - брат".)

1205. Вычислите:

1206. Сравните:

а) 2 3 и 3 2 ; б) (-2) 3 и (-3) 2 ; в) 1 3 и 1 2 ; г) (-1) 3 и (-1) 2 .

1207. Округлите 5,2853 до тысячных; до сотых ; до десятых; до единиц.

1208. Решите задачу:

1) Мотоциклист догоняет велосипедиста. Сейчас между ними 23,4 км. Скорость мотоциклиста в 3,6 раза больше скорости велосипедиста. Найдите скорости велосипедиста и мотоциклиста, если известно, что мотоциклист догонит велосипедиста через ч.
2) Легковая автомашина догоняет автобус. Сейчас между ними 18 км. Скорость автобуса составляет скорости легковой автомашины. Найдите скорости автобуса и легковой автомашины, если известно, что легковая автомашина догонит автобус через ч.

1209. Найдите значение выражения:

1) (0,7245:0,23 - 2,45) 0,18 + 0,07 4;
2) (0,8925:0,17 - 4,65) 0,17+0,098;
3) (-2,8 + 3,7 -4,8) 1,5:0,9;
4) (5,7-6,6-1,9) 2,1:(-0,49).

Проверьте ваши вычисления с помощью микрокалькулятора .
1210. Выбрав удобный порядок вычислений, найдите значение выражения:

1211. Упростите выражение:

1212. Найдите значение выражения:

1213. Выполните действия:

1214. Ученикам дали задание собрать 2,5 т металлолома. Они собрали 3,2 т металлолома. На сколько процентов учащиеся выполнили задание и на сколько процентов они перевыполнили задание?

1215. Автомашина прошла 240 км. Из них 180 км она шла по проселочной дороге, а остальной путь - по шоссе. Расход бензина на каждые 10 км проселочной дороги составил 1,6 л, а по шоссе - на 25% меньше. Сколько литров бензина в среднем расходовалось на каждые 10 км пути?

1216. Выезжая из села, велосипедист заметил на мосту пешехода, идущего в том же направлении, и догнал его через 12 мин. Найдите скорость пешехода, если скорость велосипедиста 15 км/ч, а расстояние от села до моста 1 км 800 м?

1217. Выполните действия:

а) - 4,8 3,7 - 2,9 8,7 - 2,6 5,3 + 6,2 1,9;
б) -14,31:5,3 - 27,81:2,7 + 2,565:3,42+4,1 0,8;
в) 3,5 0,23 - 3,5 (- 0,64) + 0,87 (- 2,5).

С рациональными числами люди, как вы знаете, знакомились постепенно. Вначале при счете предметов возникли натуральные числа. На первых порах их было немного. Так, еще недавно у туземцев островов в Торресовом проливе (отделяющем Новую Гвинею от Австралии) были в языке названия только двух чисел: «урапун» (один) и «оказа» (два). Островитяне считали так: «оказа-урапун» (три), «оказа-оказа» (четыре) и т. д. Все числа, начиная с семи, туземцы называли словом, обозначавшим «много».

Ученые полагают, что слово для обозначения сотни появилось более 7000 лет назад, для обозначения тысячи - 6000 лет назад, а 5000 лет тому назад в Древнем Египте и в Древнем Вавилоне появляются названия для громадных чисел - до миллиона. Но долгое время натуральный ряд чисел считался конечным: люди думали, что существует самое большое число.

Величайший древнегреческий математик и физик Архимед (287-212 гг. до н. э.) придумал способ описания громадных чисел. Самое большое число, которое умел называть Архимед, было настолько велико, что для его цифровой записи понадобилась бы лента в две тысячи раз длиннее, чем расстояние от Земли до Солнца.

Но записывать такие громадные числа еще не умели. Это стало возможным только после того, как индийскими математиками в VI в. была придумана цифра нуль и ею стали обозначать отсутствие единиц в разрядах десятичной записи числа.

При разделе добычи и в дальнейшем при измерениях величин, да и в других похожих случаях люди встретились с необходимостью ввести «ломаные числа» - обыкновенные дроби. Действия над дробями еще в средние века считались самой сложной областью математики. До сих пор немцы говорят про человека, попавшего в затруднительное положение, что он «попал в дроби».

Чтобы облегчить действия с дробями, были придуманы десятичные дроби . В Европе их ввел в Х585 г. голландский математик и инженер Симон Стевин.

Отрицательные числа появились позднее, чем дроби. Долгое время такие числа считали «несуществующими», «ложными» прежде всего из-за того, что принятое истолкование для положительных и отрицательных чисел «имущество - долг» приводило к недоумениям: можно сложить или вычесть «имущества» или «долги», но как понимать произведение или частное «имущества» и «долга»?

Однако несмотря на такие сомнения и недоумения, правила умножения и деления положительных и отрицательных чисел были предложены в III в. греческим математиком Диофантом (в виде: «Вычитаемое, умноженное на прибавляемое, дает вычитаемое; вычитаемое на вычитаемое дает прибавляемое» и т. д.), а позже индийский математик Б х а с к а р а (XII в.) выразил те же правила в понятиях «имущество», «долг» («Произведение двух имуществ или двух долгов есть имущество; произведение имущества и долга есть долг». То же правило и при делении).

Было установлено, что свойства действий над отрицательными числами те же, что и над положительными (например, сложение и умножение обладают переместительным свойством). И наконец с начала прошлого века отрицательные числа стали равоправными с положительными.

В дальнейшем в математике появились новые числа - иррациональные, комплексные и другие. О них вы узнаете в старших классах.

Н.Я.Виленкин, А.С. Чесноков, С.И. Шварцбурд, В.И.Жохов, Математика для 6 класса, Учебник для средней школы

Книги и учебники согласно календарному плануванння по математике 6 класса скачать , помощь школьнику онлайн

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
Рисунок. Арифметические действия над рациональными числами.


Текст:

Правила при действиях с рациональными числами:
. при сложении чисел с одинаковыми знаками необходимо сложить их модули и перед суммой поставить их общий знак;
. при сложении двух чисел с разными знаками из числа с большим модулем вычитают число с меньшим модулем и перед полученной разностью ставят знак числа, имеющего больший модуль;
. при вычитании одного числа из другого нужно к уменьшаемому прибавить число, противоположное вычитаемому: а - b = а + (-b)
. при умножении двух чисел с одинаковыми знаками перемножаются их модули и перед полученным произведением ставится знак плюс;
. при умножении двух чисел с разными знаками перемножаются их модули и перед полученным произведением ставится знак минус;
. при делении чисел с одинаковыми знаками модуль делимого делят на модуль делителя и перед полученным частным ставится знак плюс;
. при делении чисел с разными знаками модуль делимого делят на модуль делителя и перед полученным частным ставится знак минус;
. при делении и умножении нуля на любое число, не равное нулю, получается нуль:
. на нуль делить нельзя.

Урок4
СТЕПЕНЬ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ

Цели : способствовать формированию вычислительных умений и навыков, накоплению знаний о степенях на основе вычислительного опыта; познакомить с записью больших и маленьких чисел с помощью степеней числа 10.

Ход урока

I. Актуализация опорных знаний.

Учитель проводит анализ результатов проверочной работы, каждый ученик получает рекомендации по разработке индивидуального плана коррекции вычислительных умений и навыков.

Затем учащимся предлагается выполнить вычисления и прочитать имена известных математиков, внесших вклад в построение теории степеней:

0,3 2 ; 5 3 ; (– 12) 2 ; ; ; –7 3 ; (–0,2) 3 ; –13 2 ; 1,7 2 ; ; 1,1 2 ; 1 3 .

Ключ:

С помощью компьютера или эпипроектора на экран проецируются портреты ученых Диофанта, Рене Декарта, Симона Стевина. Учащимся предлагается подготовить по желанию исторические справки о жизни и деятельности этих ученых-математиков.

II. Формирование новых понятий и способов действия.

Учащиеся записывают в тетради следующие выражения:

1. 2 + 2 + 2 + 2 + 2;

2. 2 + 2 + 2 + … + 2;

а слагаемых

3. 5 ∙ 5 ∙ 5 ∙ 5 ∙ 5 ∙ 5;

4. 5 ∙ 5 … ∙ 5;

n множителей

5. а а а ;

n множителей

Учащимся предлагается ответить на вопрос: «Как можно представить эти записи более компактно, чтобы они стали "обозримыми"»?

Затем учитель проводит беседу по новой теме, знакомит учащихся с понятием первой степени числа. Учащиеся могут подготовить инсценировку древней индийской легенды об изобретателе шахмат Сете и царе Шераме. Закончить беседу необходимо рассказом об употреблении при записи больших и малых величин степеней числа 10 и, предложив учащимся к рассмотрению несколько справочников по физике, технике, астрономии, дать им самим возможность найти в книгах примеры таких величин.

III. Формирование умений и навыков.

1. Решение упражнений № 40 г), д), е); 51.

В ходе решения учащиеся делают заключение о том, что полезно помнить: степень с отрицательным основанием положительна, если показатель степени четный, и отрицательна, если показатель степени нечетный.

2. Решение упражнений № 41, 47.

IV. Подведение итогов.

Учитель комментирует и оценивает работу учащихся на уроке.

Домашнее задание: п. 1.3, № 42, 43, 52; по желанию: подготовить сообщения о Диофанте, Декарте, Стевине.

Историческая справка

Диофант – древнегреческий математик из Александрии (III в.). Сохранилась часть его математического трактата «Арифметика» (6 книг из 13), где дается решение задач, в большинстве приводящихся к так называемым «диофантовым уравнениям», решение которых ищется в рациональных положительных числах (отрицательных чисел у Диофанта нет).

Для обозначения неизвестного и его степеней (до шестой), знака равенства Диофант употреблял сокращенную запись соответствующих слов. Обнаружен учеными также арабский текст еще 4 книг «Арифметики» Диофанта. Сочинения Диофанта явились отправной точкой для исследований П. Ферма, Л. Эйлера, К. Гаусса и других.

Декарт Рене (31. 03. 159 6 –11. 02. 1650) – французский философ и математик, происходил из старинного дворянского рода. Образование получил в иезуитской школе Ла Флеш в Анжу. В начале Тридцатилетней войны служил в армии, которую оставил в 1621 году; после нескольких лет путешествий переселился в Нидерланды (1629), где провел двадцать лет в уединенных научных занятиях. В 1649 году по приглашению шведской королевы переселился в Стокгольм, но вскоре умер.

Декарт заложил основы аналитической геометрии, ввел многие современные алгебраические обозначения. Декарт значительно улучшил систему обозначений, введя общепринятые знаки для переменных величин
(х , у , z …) и коэффициентов (а , b , с …), а также обозначения степеней (х 4 , а 5 …). Запись формул у Декарта почти ничем не отличается от современной.

В аналитической геометрии основным достижением Декарта явился созданный им метод координат.

Стевин Симон (1548–1620) – нидерландский ученый и инженер. С 1583 года преподавал в Лейденском университете, в 1600 году организовал инженерную школу при Лейденском университете, где читал лекции по математике. Работа Стевина «Десятина» (1585) посвящена десятичной системе мер и десятичным дробям, которые Симон Стевин ввел в употребление в Европе.


В этой статье дан обзор свойств действий с рациональными числами . Сначала озвучены основные свойства, на которых базируются все остальные свойства. После этого даны некоторые другие часто используемые свойства действий с рациональными числами.

Навигация по странице.

Перечислим основные свойства действий с рациональными числами (a , b и c – произвольные рациональные числа):

  • Переместительное свойство сложения a+b=b+a .
  • Сочетательное свойство сложения (a+b)+c=a+(b+c) .
  • Существование нейтрального элемента по сложению – нуля, сложение которого с любым числом не изменяет это число, то есть, a+0=a .
  • Для каждого рационального числа a существует противоположное число −a такое, что a+(−a)=0 .
  • Переместительное свойство умножения рациональных чисел a·b=b·a .
  • Сочетательное свойство умножения (a·b)·c=a·(b·c) .
  • Существование нейтрального элемента по умножению – единицы, умножение на которую любого числа не изменяет это число, то есть, a·1=a.
  • Для каждого отличного от нуля рационального числа a существует обратное число a −1 такое, что a·a −1 =1 .
  • Наконец, сложение и умножение рациональных чисел связаны распределительным свойством умножения относительно сложения: a·(b+c)=a·b+a·c .

Перечисленные свойства действий с рациональными числами являются основными, так как все остальные свойства могут быть получены из них.

Другие важные свойства

Помимо девяти перечисленных основных свойств действий с рациональными числами существует еще ряд очень широко используемых свойств. Дадим их краткий обзор.

Начнем со свойства, которое с помощью букв записывается как a·(−b)=−(a·b) или в силу переместительного свойства умножения как (−a)·b=−(a·b) . Из этого свойства напрямую следует правило умножения рациональных чисел с разными знаками , в указанной статье приведено и его доказательство. Указанное свойство объясняет правило «плюс умножить на минус есть минус, и минус умножить на плюс есть минус».

Вот следующее свойство: (−a)·(−b)=a·b . Из него следует правило умножения отрицательных рациональных чисел , в этой статье Вы найдете и доказательство приведенного равенства. Этому свойству отвечает правило умножения «минус умножить на минус есть плюс».

Несомненно, стоит остановиться на умножении произвольного рационального числа a на нуль: a·0=0 или 0·a=0 . Докажем это свойство. Мы знаем, что 0=d+(−d) для любого рационального d , тогда a·0=a·(d+(−d)) . Распределительное свойство позволяет полученное выражение переписать как a·d+a·(−d) , а так как a·(−d)=−(a·d) , то a·d+a·(−d)=a·d+(−(a·d)) . Так мы пришли к сумме двух противоположных чисел, равных a·d и −(a·d) , их сумма дает нуль, что и доказывает равенство a·0=0 .

Легко заметить, что выше мы перечислили только свойства сложения и умножения, при этом ни слова не сказали о свойствах вычитания и деления. Это связано с тем, что на множестве рациональных чисел действия вычитание и деление задаются как обратные к сложению и умножению соответственно. То есть, разность a−b – это есть сумма a+(−b) , а частное a:b – это есть произведение a·b −1 (b≠0 ).

Учитывая эти определения вычитания и деления, а также основные свойства сложения и умножения, можно доказать любые свойства действий с рациональными числами.

Для примера докажем распределительное свойство умножения относительно вычитания: a·(b−c)=a·b−a·c . Имеет место следующая цепочка равенств a·(b−c)=a·(b+(−c))= a·b+a·(−c)=a·b+(−(a·c))=a·b−a·c , которая и является доказательством.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Загрузка...